Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
Beide Seiten der vorigen Revision Vorhergehende Überarbeitung Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
electrical_engineering_1:task_jti0uzudcmg4u22t_with_calculation [2023/02/12 06:34] – mexleadmin | electrical_engineering_1:task_jti0uzudcmg4u22t_with_calculation [Unbekanntes Datum] (aktuell) – gelöscht - Externe Bearbeitung (Unbekanntes Datum) 127.0.0.1 | ||
---|---|---|---|
Zeile 1: | Zeile 1: | ||
- | {{tag> | ||
- | |||
- | <panel type=" | ||
- | <fs x-large> | ||
- | |||
- | A circuit with an ideal voltage source ($U=50 V$, $f=330 Hz$) and two components ($R$ and $\underline{X}_1$) shall be given. \\ | ||
- | After analysis, the following formula for the impedance was extracted: | ||
- | \begin{align*} | ||
- | \underline{Z} = \left({{2}\over{3+4j}}+5j \right) \Omega | ||
- | \end{align*} | ||
- | |||
- | 1. Calculate the physical values of the two components. | ||
- | |||
- | <button size=" | ||
- | <callout type=" | ||
- | |||
- | \begin{align*} | ||
- | \underline{Z} &= \left({{2}\over{3+4j}} + 5j \right) \Omega \\ | ||
- | &= \left({{2}\over{3+4j}} \cdot {{3-4j}\over{3-4j}} + 5j \right) \Omega \\ | ||
- | &= \left({{2}\over{9+16}} \cdot (3-4j) + 5j \right) \Omega \\ | ||
- | &= \left(0.24 - 0.32j + 5j \right) \Omega \\ | ||
- | &= 0.24 \Omega + j \cdot 4.68 \Omega \\ | ||
- | &= R + j X_L \\ | ||
- | \end{align*} | ||
- | |||
- | With the complex part comes the physical value: | ||
- | \begin{align*} | ||
- | X_L &= \omega L \\ | ||
- | | ||
- | &= {{4.68 \Omega}\over{2\pi \cdot 300 Hz}} \\ | ||
- | \end{align*} | ||
- | </ | ||
- | |||
- | <button size=" | ||
- | |||
- | \begin{align*} | ||
- | | ||
- | | ||
- | \end{align*}</ | ||
- | \\ | ||
- | </ | ||
- | |||
- | 2. Calculate the phase and absolute value of complex current $\underline{I}$ through the circuit. | ||
- | |||
- | <button size=" | ||
- | <callout type=" | ||
- | \begin{align*} | ||
- | \underline{I} &= {{\underline{U}}\over{\underline{Z}}} \\ | ||
- | &= {{50 V}\over{ 0.24 \Omega + j \cdot 4.68 \Omega }} \\ | ||
- | &= {{50 V}\over{ 0.24 \Omega + j \cdot 4.68 \Omega }} \cdot {{ 0.24 \Omega - j \cdot 4.68 \Omega }\over{ 0.24 \Omega - j \cdot 4.68 \Omega }} \\ | ||
- | &= {{50 V}\over{ (0.24 \Omega)^2 + (4.68 \Omega)^2 }} \cdot ( 0.24 \Omega - j \cdot 4.68 \Omega ) \\ | ||
- | \end{align*} | ||
- | |||
- | The absolute value $|\underline{I}|$ can be calculated as: | ||
- | \begin{align*} | ||
- | |\underline{I}| &= {|{\underline{U}|}\over{|\underline{Z}|}} \\ | ||
- | &= {{50 V}\over{| 0.24 \Omega + j \cdot 4.68 \Omega |}} \\ | ||
- | &= {{50 V}\over{\sqrt{ (0.24 \Omega)^2 + (4.68 \Omega)^2 }}} | ||
- | \end{align*} | ||
- | |||
- | The phase $\varphi_i$ can be calculated as | ||
- | \begin{align*} | ||
- | \varphi_i &= arctan \left( {{Im()}\over{Re()}} \right) \\ | ||
- | &= arctan \left( {{-4.68 \Omega}\over{0.24 \Omega}} \right) \\ | ||
- | \end{align*} | ||
- | |||
- | </ | ||
- | |||
- | <button size=" | ||
- | |||
- | \begin{align*} | ||
- | |\underline{I}| &= 10.67 A \\ | ||
- | \varphi_i | ||
- | \end{align*}</ | ||
- | \\ | ||
- | </ | ||
- | |||
- | 3. Now an additional component $\underline{X}_2$ shall be added in series to the two components. \\ | ||
- | This component shall be dimensioned in such a way that the current and voltage are in phase. Calculate these component value! | ||
- | |||
- | <button size=" | ||
- | <callout type=" | ||
- | The current and voltage are in phase once there is only a pure ohmic (= pure real) resulting impedance $\underline{Z} + \underline{X}_2$. \\ | ||
- | Therefore, the component mus be a capacitor with the same absolute value of impedance: $|\underline{X}_C| = |\underline{X}_L| $ | ||
- | \begin{align*} | ||
- | X_C &= {{1}\over{\omega \cdot C}} = X_L \\ | ||
- | | ||
- | &= {{1}\over{2\pi \cdot 300 Hz \cdot 4.68 \Omega}} \\ | ||
- | \end{align*} | ||
- | |||
- | </ | ||
- | |||
- | <button size=" | ||
- | <callout type=" | ||
- | \begin{align*} | ||
- | | ||
- | \end{align*}</ | ||
- | \\ | ||
- | </ | ||
- | |||
- | |||
- | </ | ||