Dies ist eine alte Version des Dokuments!
Exercise 1.1 : Analyzing complex Impedances
(written test, approx. 14% of a 60-minute written test, WS2022)
A circuit with an ideal voltage source ($U=50 V$, $f=330 Hz$) and two components ($R$ and $\underline{X}_1$) shall be given.
After analysis, the following formula for the impedance was extracted:
\begin{align*}
\underline{Z} = \left({{2}\over{3+4j}}+5j \right) \Omega
\end{align*}
1. Calculate the physical values of the two components.
With the complex part comes the physical value: \begin{align*} X_L &= \omega L \\ L &= {{X_L}\over{2\pi \cdot f}} \\ &= {{4.68 \Omega}\over{2\pi \cdot 300 Hz}} \\ \end{align*}
2. Calculate the phase and absolute value of complex current $\underline{I}$ through the circuit.
The absolute value $|\underline{I}|$ can be calculated as: \begin{align*} |\underline{I}| &= {|{\underline{U}|}\over{|\underline{Z}|}} \\ &= {{50 V}\over{| 0.24 \Omega + j \cdot 4.68 \Omega |}} \\ &= {{50 V}\over{\sqrt{ (0.24 \Omega)^2 + (4.68 \Omega)^2 }}} \end{align*}
The phase $\varphi_i$ can be calculated as \begin{align*} \varphi_i &= arctan \left( {{Im()}\over{Re()}} \right) \\ &= arctan \left( {{-4.68 \Omega}\over{0.24 \Omega}} \right) \\ \end{align*}
3. Now an additional component $\underline{X}_2$ shall be added in series to the two components.
This component shall be dimensioned in such a way that the current and voltage are in phase. Calculate these component value!
Therefore, the component mus be a capacitor with the same absolute value of impedance: $|\underline{X}_C| = |\underline{X}_L| $ \begin{align*} X_C &= {{1}\over{\omega \cdot C}} = X_L \\ C &= {{1}\over{\omega \cdot X_L}} \\ &= {{1}\over{2\pi \cdot 300 Hz \cdot 4.68 \Omega}} \\ \end{align*}