Exercise E8 Magnetic Circuit
(written test, approx. 10 % of a 120-minute written test, SS2024)
A symmetric and balanced three-phase motor is driven with a $230 ~\rm V$ / $400 ~\rm V$ / $50 ~\rm Hz$ three-phase power net. Each single string has a resistor $R=5 ~\Omega$ and an inductance of $L=10 ~\rm mH$.
1. Calculate the $\cos \varphi$, and the magnitude of the impedance $|Z|$ for a single string.
The phase $\varphi$ is given by: \begin{align*} \varphi &= \arctan \left( {{X_{L}}\over{R}} \right) \\ &= \arctan \left( {{2\pi \cdot f \cdot L}\over{R}} \right) \\ &= \arctan \left( {{2\pi \cdot 50 {~\rm Hz} \cdot 10 \cdot 10^{-3} {~\rm H}}\over{5 ~\Omega}} \right) \\ &= 0.5609 ... \hat{=} +32° \\ \end{align*}
With this, the $\cos \varphi$ becomes \begin{align*} \cos \varphi &= \cos(0.5609 ...) \\ &= 0.84673...\\ \end{align*}
The impedance is given by: \begin{align*} |\underline{Z}_{RL}| &= \sqrt{X_{L}^2 + R^2} \\ &= \sqrt{( 2\pi \cdot f \cdot L )^2 + R^2} \\ &= \sqrt{( 2\pi \cdot 50 {~\rm Hz} \cdot 10 \cdot 10^{-3} {~\rm H})^2 +(5 ~\Omega)^2} \\ &= 5.905... ~\Omega\\ \end{align*}
- $|\underline{Z}_{RL}| = 5.90 ~\Omega$
- $\cos\varphi = 0.84673$
2. Calculate the true power, the apparent power, and the reactive power of the motor.
The active power is \begin{align*} P &= S \cdot \cos \varphi \\ &= 26.898... \cdot 0.84673 ~\rm kW \\ &= 22.775... ~\rm kW \\ \end{align*}
The reactive power is \begin{align*} Q &= \sqrt{S^2 - P^2} \\ &= \sqrt{ (26.898... ~\rm kVA)^2 - (22.775... ~\rm kW)^2} \\ &= 14.310...~\rm kVAr \\ \end{align*}
- active power:
$P=22.775~\rm kW$
- reactive power:
$Q=14.310~\rm kVAr$
- apparent power:
$S=26.898~\rm kVA$