Exercise E1 Complex voltage dividers
(written test, approx. 16 % of a 60-minute written test, SS2023)
The circuit below shall be given with the following values:
- $R = 1.1 ~\rm k\Omega$
- $L = 3.5 ~\rm mH$
- $\underline{U}_\rm I = 5 ~\rm V$
- $f_0 = 150 ~\rm kHz$
1. Calculate the impedance $\underline{Z}_L$.
2. Draw the two impedance phasors and the resulting phasor for the overall impedance in a diagram. Choose an appropriate scaling factor and write it down.
3. Calculate the output voltage $|\underline{U}_\rm O|$ and the phase shift between $\underline{U}_\rm O$ and $\underline{U}_\rm I$.
\begin{align*} \underline{U}_{\rm O} &= 0.5 ~\rm V - j \cdot 1.5 ~V \end{align*}
4. Calculate the cut-off frequency of this setup.
At cut off frequency the absolute values of impedances $\underline{Z}_L$ is equal to $\underline{Z}_R=R$. This leads to: \begin{align*} f_{\rm cutoff} &= {{R} \over {2\pi \cdot L} } \\ &= {{1.1 \cdot 10^3 {\rm {V} \over{A} } } \over {2\pi \cdot 3.5 \cdot 10^{-3} {\rm {As} \over{V} } }} \end{align*}