Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
Beide Seiten der vorigen Revision Vorhergehende Überarbeitung Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
circuit_design:rechnung_nichtinvertierender_verstaerker [2021/11/28 02:16] – tfischer | circuit_design:rechnung_nichtinvertierender_verstaerker [2023/03/28 09:51] (aktuell) – mexleadmin | ||
---|---|---|---|
Zeile 1: | Zeile 1: | ||
- | ~~REVEAL | + | ~~REVEAL ~~ |
----> | ----> | ||
- | $I.\quad$ Analysis of the Currents | + | $\rm I.\quad$ Analysis of the Currents |
<---- | <---- | ||
----> | ----> | ||
- | |by (2+3)|$\color{blue}{I_p} = \color{blue}{I_m} = 0$ | therefore, $I_p$ and $I_m$ are defined| | + | |by (2)+(3)|$\color{blue}{I_\rm p} = \color{blue}{I_\rm m} = 0$ | |
- | |$\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | + | | | therefore, $I_\rm p$ and $I_\rm m$ are defined| |
+ | |$\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | ||
<---- | <---- | ||
----> | ----> | ||
- | |by (6)|$\color{blue}{I_o} = I_1 $ |$I_o$ is defined, when $I_1$ is defined| | + | |by (6)|$\color{blue}{I_\rm O} = I_1 $ | |
- | |$\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | + | | |$I_\rm O$ is defined, when $I_1$ is defined| |
+ | |$\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | ||
<---- | <---- | ||
----> | ----> | ||
- | |by (7) and (3)|$I_1 - I_2 -\color{blue}{0} = 0 $ |$\quad$| | + | |by (7)+(3)|$I_1 - I_2 -\color{blue}{0} = 0 $ | |
- | |$\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | + | | |
+ | |$\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | ||
<---- | <---- | ||
----> | ----> | ||
- | |$\quad$|$I_1 = I_2 = I_o$ |$\quad$| | + | |$\quad$|$I_1 = I_2 = I_\rm O$ | |
- | |$\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | + | | |
+ | |$\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | ||
<---- | <---- | ||
----> | ----> | ||
- | |$\quad$|$\color{blue}{I_1} = \color{blue}{I_2} = \color{blue}{I_o} $ |with (8) and (9): $I_\boxed{}=\frac{U_\boxed{}}{R_\boxed{}}$ and (5)| | + | |$\quad$|$\color{blue}{I_1} = \color{blue}{I_2} = \color{blue}{I_\rm O} $ | |
- | |$\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | + | | |with (8) and (9): $I_\boxed{}=\frac{U_\boxed{}}{R_\boxed{}}$ and (5)| |
+ | |$\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | ||
<---- | <---- | ||
----> | ----> | ||
- | | $\quad$ |$\frac{U_1}{R_1}= \frac{U_2}{R_2} = \frac{U_A}{R_1 + R_2}$ | + | | $\quad$ |$\frac{U_1}{R_1}= \frac{U_2}{R_2} = \frac{U_\rm O}{R_1 + R_2}$ | |
- | |$\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | + | | |
+ | |$\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | ||
<---- | <---- | ||
----> | ----> | ||
- | | (10)|$U_2= | + | | (10)|$U_2= |
- | |$\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | + | | |
+ | |$\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | ||
<---- | <---- | ||
----> | ----> | ||
- | $II.\quad$ Analysis | + | $\rm II.\quad$ Analysis |
<---- | <---- | ||
---->> | ---->> | ||
- | |by (0) |$\color{blue}{A_V}=\frac{U_O}{U_I}$ | $\quad$| | + | |by (0) |$\color{blue}{A_\rm V}=\frac{U_\rm O}{U_\rm I}$ | |
- | |$\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | + | | |
+ | |$\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | ||
<< | << | ||
---->> | ---->> | ||
- | | $\quad$ | + | | $\quad$ |
- | |$\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | + | | |with (4): $U_{\rm I}=U_2+U_\rm D$| |
+ | |$\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | ||
<< | << | ||
---->> | ---->> | ||
- | | $\quad$ | + | | $\quad$ |
- | |$\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | + | | | $\quad$ |
+ | |$\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | ||
<< | << | ||
---->> | ---->> | ||
- | | $\quad$ | + | | $\quad$ |
- | |$\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | + | | | with (10): $U_2= U_{\rm O}\cdot\frac{R_2}{R_1+R_2}$ |
+ | |$\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | ||
<< | << | ||
---->> | ---->> | ||
- | | $\quad$ | + | | $\quad$ |
- | |$\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | + | | | $\quad$ | |
+ | |$\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | ||
<< | << | ||
---->> | ---->> | ||
- | | $\quad$ | + | | $\quad$ |
+ | | | $\quad$ | | ||
|$\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | |$\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | ||
<< | << | ||
---->> | ---->> | ||
- | | $\quad$ | + | | $\quad$ |
- | |$\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | + | | | with (1)| |
+ | |$\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | ||
<< | << | ||
---->> | ---->> | ||
- | | $\quad$ | + | | $\quad$ |
- | |$\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | + | | | $\quad$ | |
+ | |$\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | ||
<< | << | ||
---->> | ---->> | ||
- | | $\quad$ | + | | $\quad$ |
- | |$\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | + | | | $\quad$ | |
+ | |$\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | ||
<< | << | ||
---->> | ---->> | ||
- | | $\quad$ | + | | $\quad$ |
- | |$\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | + | | | Expand with $\frac{1}{U_{\rm O}}$ | |
+ | |$\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | ||
<< | << | ||
---->> | ---->> | ||
- | | $\quad$ | + | | $\quad$ |
- | |$\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | + | | | $\quad$ |
+ | |$\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | ||
<< | << | ||
---->> | ---->> | ||
- | | $\quad$ | + | | $\quad$ |
- | |$\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | + | | | with $\frac{1}{A_{\rm D}} \xrightarrow{A_{\rm D} \rightarrow \infty} 0$ | |
+ | |$\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | ||
<< | << | ||
---->> | ---->> | ||
- | | $\quad$ | + | | $\quad$ |
- | |$\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | + | | | reshaping the fraction | |
+ | |$\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | ||
<< | << | ||
---->> | ---->> | ||
- | | $\quad$ | + | | $\quad$ |
- | |$\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | + | | | $\quad$ |
+ | |$\quad\quad\quad$|$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$| | ||
<< | << |