Dies ist eine alte Version des Dokuments!
$I.\quad$ Analysis of the Currents
by (2+3) | $\color{blue}{I_p} = \color{blue}{I_m} = 0$ | therefore, $I_p$ and $I_m$ are defined |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
by (6) | $\color{blue}{I_o} = I_1 $ | $I_o$ is defined, when $I_1$ is defined |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
by (7) and (3) | $I_1 - I_2 -\color{blue}{0} = 0 $ | $\quad$ |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $I_1 = I_2 = I_o$ | $\quad$ |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $\color{blue}{I_1} = \color{blue}{I_2} = \color{blue}{I_o} $ | with (8) and (9): $I_\boxed{}=\frac{U_\boxed{}}{R_\boxed{}}$ and (5) |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $\frac{U_1}{R_1}= \frac{U_2}{R_2} = \frac{U_A}{R_1 + R_2}$ | Voltage divider, $I=const.$ |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
(10) | $U_2= U_A\cdot\frac{R_2}{R_1+R_2}$ | Voltage divider |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$II.\quad$ Analysis if the Voltage Amplification
by (0) | $\color{blue}{A_V}=\frac{U_O}{U_I}$ | $\quad$ |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{U_O}{\color{blue}{U_I}}$ | with (4): $U_I=U_2+U_D$ |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{U_O}{\color{blue}{U_2+U_D}}$ | $\quad$ |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{U_O}{\color{blue}{U_2}+U_D}$ | with (10): $U_2= U_O\cdot\frac{R_2}{R_1+R_2}$ |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{U_O}{\color{blue}{U_A\cdot\frac{R_2}{R_1+R_2}}+U_D}$ | $\quad$ |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{U_O}{U_O\cdot\frac{R_2}{R_1+R_2}+U_D}$ | $\quad$ |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{U_O}{U_O\cdot\frac{R_2}{R_1+R_2}+\color{blue}{U_D}}$ | with (1) |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{U_O}{U_O\cdot\frac{R_2}{R_1+R_2}+\color{blue}{\frac{U_O}{A_D}}}$ | $\quad$ |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{U_O}{U_O\cdot\frac{R_2}{R_1+R_2}+\frac{U_O}{A_D}}$ | $\quad$ |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{\color{blue}{U_O}}{\color{blue}{U_O}\cdot\frac{R_2}{R_1+R_2}+\frac{\color{blue}{U_O}}{A_D}}$ | Expand with $\frac{1}{U_O}$ |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{1}{\frac{R_2}{R_1+R_2}+\frac{1}{A_D}}$ | $\quad$ |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{1}{\frac{R_2}{R_1+R_2}+\color{blue}{\frac{1}{A_D}}}$ | with $\frac{1}{A_D} \xrightarrow{A_D \rightarrow \infty} 0$ |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{1}{\frac{R_2}{R_1+R_2}}$ | reshaping the fraction |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{R_1+R_2}{R_2}$ | $\quad$ |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |