Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
| Beide Seiten der vorigen Revision Vorhergehende Überarbeitung Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
| introduction_to_digital_systems:calc_logic_example [2021/09/17 00:05] – tfischer | introduction_to_digital_systems:calc_logic_example [2021/09/17 00:08] (aktuell) – tfischer | ||
|---|---|---|---|
| Zeile 1: | Zeile 1: | ||
| ~~REVEAL ~~ | ~~REVEAL ~~ | ||
| - | |||
| - | |||
| - | ---->> | ||
| - | example for a simplification with the rule for boolean algebra \\ \\ | ||
| - | |||
| - | \begin{align*} | ||
| - | \begin{array}{ll} | ||
| - | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ | ||
| - | \quad\quad\quad\quad\quad\quad | ||
| - | \end{array} | ||
| - | \end{align*} | ||
| - | |||
| - | << | ||
| - | |||
| - | ---->> | ||
| - | example for a simplification with the rule for boolean algebra \\ \\ | ||
| - | |||
| - | \begin{align*} | ||
| - | \begin{array}{ll} | ||
| - | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ | ||
| - | \quad\quad\quad\quad\quad\quad | ||
| - | \end{array} | ||
| - | \end{align*} | ||
| - | |||
| - | << | ||
| - | |||
| - | ---->> | ||
| - | example for a simplification with the rule for boolean algebra \\ \\ | ||
| - | |||
| - | \begin{align*} | ||
| - | \begin{array}{ll} | ||
| - | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ | ||
| - | \quad\quad\quad\quad\quad\quad | ||
| - | \end{array} | ||
| - | \end{align*} | ||
| - | |||
| - | << | ||
| - | |||
| - | ---->> | ||
| - | example for a simplification with the rule for boolean algebra \\ \\ | ||
| - | |||
| - | \begin{align*} | ||
| - | \begin{array}{ll} | ||
| - | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ | ||
| - | \quad\quad\quad\quad\quad\quad | ||
| - | \end{array} | ||
| - | \end{align*} | ||
| - | |||
| - | << | ||
| - | |||
| - | ---->> | ||
| - | example for a simplification with the rule for boolean algebra \\ \\ | ||
| - | |||
| - | \begin{align*} | ||
| - | \begin{array}{ll} | ||
| - | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ | ||
| - | \quad\quad\quad\quad\quad\quad | ||
| - | \end{array} | ||
| - | \end{align*} | ||
| - | |||
| - | << | ||
| - | |||
| - | ---->> | ||
| - | example for a simplification with the rule for boolean algebra \\ \\ | ||
| - | |||
| - | \begin{align*} | ||
| - | \begin{array}{ll} | ||
| - | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ | ||
| - | \quad\quad\quad\quad\quad\quad | ||
| - | \end{array} | ||
| - | \end{align*} | ||
| - | |||
| - | << | ||
| - | |||
| - | ---->> | ||
| - | example for a simplification with the rule for boolean algebra \\ \\ | ||
| - | |||
| - | \begin{align*} | ||
| - | \begin{array}{ll} | ||
| - | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ | ||
| - | \quad\quad\quad\quad\quad\quad | ||
| - | \end{array} | ||
| - | \end{align*} | ||
| - | |||
| - | << | ||
| - | |||
| - | ---->> | ||
| - | example for a simplification with the rule for boolean algebra \\ \\ | ||
| - | |||
| - | \begin{align*} | ||
| - | \begin{array}{ll} | ||
| - | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ | ||
| - | \quad\quad\quad\quad\quad\quad | ||
| - | \end{array} | ||
| - | \end{align*} | ||
| - | |||
| - | << | ||
| - | |||
| - | ---->> | ||
| - | example for a simplification with the rule for boolean algebra \\ \\ | ||
| - | |||
| - | \begin{align*} | ||
| - | \begin{array}{ll} | ||
| - | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ | ||
| - | \quad\quad\quad\quad\quad\quad | ||
| - | \end{array} | ||
| - | \end{align*} | ||
| - | |||
| - | << | ||
| - | |||
| - | ---->> | ||
| - | example for a simplification with the rule for boolean algebra \\ \\ | ||
| - | |||
| - | \begin{align*} | ||
| - | \begin{array}{ll} | ||
| - | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ | ||
| - | \quad\quad\quad\quad\quad\quad | ||
| - | \end{array} | ||
| - | \end{align*} | ||
| - | |||
| - | << | ||
| - | |||
| - | ---->> | ||
| - | example for a simplification with the rule for boolean algebra \\ \\ | ||
| - | |||
| - | \begin{align*} | ||
| - | \begin{array}{ll} | ||
| - | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ | ||
| - | \quad\quad\quad\quad\quad\quad | ||
| - | \end{array} | ||
| - | \end{align*} | ||
| - | |||
| - | << | ||
| - | |||
| - | ---->> | ||
| - | example for a simplification with the rule for boolean algebra \\ \\ | ||
| - | |||
| - | \begin{align*} | ||
| - | \begin{array}{ll} | ||
| - | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ | ||
| - | \quad\quad\quad\quad\quad\quad | ||
| - | \end{array} | ||
| - | \end{align*} | ||
| - | |||
| - | << | ||
| - | |||
| - | ---->> | ||
| - | example for a simplification with the rule for boolean algebra \\ \\ | ||
| - | |||
| - | \begin{align*} | ||
| - | \begin{array}{ll} | ||
| - | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ | ||
| - | \quad\quad\quad\quad\quad\quad | ||
| - | \end{array} | ||
| - | \end{align*} | ||
| - | |||
| - | << | ||
| - | |||
| - | ---->> | ||
| - | example for a simplification with the rule for boolean algebra \\ \\ | ||
| - | |||
| - | \begin{align*} | ||
| - | \begin{array}{ll} | ||
| - | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ | ||
| - | \quad\quad\quad\quad\quad\quad | ||
| - | \end{array} | ||
| - | \end{align*} | ||
| - | |||
| - | << | ||
| - | |||
| - | ---->> | ||
| - | example for a simplification with the rule for boolean algebra \\ \\ | ||
| - | |||
| - | \begin{align*} | ||
| - | \begin{array}{ll} | ||
| - | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ | ||
| - | \quad\quad\quad\quad\quad\quad | ||
| - | \end{array} | ||
| - | \end{align*} | ||
| - | |||
| - | << | ||
| ---->> | ---->> | ||
| Zeile 363: | Zeile 182: | ||
| \begin{align*} | \begin{align*} | ||
| \begin{array}{ll} | \begin{array}{ll} | ||
| - | /(a \quad \, + \quad\enspace b ) \qquad\qquad\quad | + | /(a \quad \, + \quad\enspace b ) \qquad\qquad\quad\; & \color{white}{\overline{ab}} |
| + | \quad\quad\quad\quad\quad\quad | ||
| + | \end{array} | ||
| + | \end{align*} | ||
| + | << | ||
| + | |||
| + | ---->> | ||
| + | 8. $\color{blue}{\text{DeMorgan}}$ \\ \\ \\ | ||
| + | |||
| + | \begin{align*} | ||
| + | \begin{array}{ll} | ||
| + | \color{blue}{/ | ||
| + | \quad\quad\quad\quad\quad\quad | ||
| + | \end{array} | ||
| + | \end{align*} | ||
| + | << | ||
| + | |||
| + | ---->> | ||
| + | 8. $\color{blue}{\text{DeMorgan}}$ \\ \\ \\ | ||
| + | |||
| + | \begin{align*} | ||
| + | \begin{array}{ll} | ||
| + | \;/a \quad \, \cdot \quad\enspace /b \qquad\qquad\quad\; | ||
| \quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
| \end{array} | \end{array} | ||
| \end{align*} | \end{align*} | ||
| << | << | ||