Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
| Beide Seiten der vorigen Revision Vorhergehende Überarbeitung Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
| introduction_to_digital_systems:calc_logic_example [2021/09/16 23:38] – tfischer | introduction_to_digital_systems:calc_logic_example [2021/09/17 00:08] (aktuell) – tfischer | ||
|---|---|---|---|
| Zeile 1: | Zeile 1: | ||
| ~~REVEAL ~~ | ~~REVEAL ~~ | ||
| - | |||
| ---->> | ---->> | ||
| example for a simplification with the rule for boolean algebra \\ \\ | example for a simplification with the rule for boolean algebra \\ \\ | ||
| Zeile 15: | Zeile 14: | ||
| ---->> | ---->> | ||
| - | example for a simplification with the rule for boolean algebra | + | At first we will switch |
| \begin{align*} | \begin{align*} | ||
| \begin{array}{ll} | \begin{array}{ll} | ||
| - | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & | + | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & |
| \quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
| \end{array} | \end{array} | ||
| \end{align*} | \end{align*} | ||
| - | |||
| << | << | ||
| - | |||
| ---->> | ---->> | ||
| - | example for a simplification with the rule for boolean algebra | + | At first we will switch |
| \begin{align*} | \begin{align*} | ||
| \begin{array}{ll} | \begin{array}{ll} | ||
| - | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & | + | /(a + (b \cdot (/a + c) \cdot 1 ) + a ) & |
| \quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
| \end{array} | \end{array} | ||
| \end{align*} | \end{align*} | ||
| - | |||
| << | << | ||
| ---->> | ---->> | ||
| - | example for a simplification with the rule for boolean algebra | + | 1. $\color{blue}{\text{Neutral Element}}$ \\ \\ \\ |
| \begin{align*} | \begin{align*} | ||
| \begin{array}{ll} | \begin{array}{ll} | ||
| - | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & | + | /(a + (b \cdot (/a + c) \color{blue}{\cdot |
| \quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
| \end{array} | \end{array} | ||
| \end{align*} | \end{align*} | ||
| - | |||
| << | << | ||
| ---->> | ---->> | ||
| - | example for a simplification with the rule for boolean algebra | + | 1. $\color{blue}{\text{Neutral Element}}$ \\ \\ \\ |
| \begin{align*} | \begin{align*} | ||
| \begin{array}{ll} | \begin{array}{ll} | ||
| - | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & | + | /(a + (b \cdot (/a + c) \quad \; ) + a ) & |
| \quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
| \end{array} | \end{array} | ||
| \end{align*} | \end{align*} | ||
| - | |||
| << | << | ||
| ---->> | ---->> | ||
| - | example for a simplification with the rule for boolean algebra | + | 2. $\color{blue}{\text{Commutative Law}}$ \\ \\ \\ |
| \begin{align*} | \begin{align*} | ||
| \begin{array}{ll} | \begin{array}{ll} | ||
| - | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & | + | /(a + \color{blue}{(b \cdot (/a + c) \quad \; ) + a }) & |
| \quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
| \end{array} | \end{array} | ||
| \end{align*} | \end{align*} | ||
| - | |||
| << | << | ||
| ---->> | ---->> | ||
| - | example for a simplification with the rule for boolean algebra | + | 2. $\color{blue}{\text{Commutative Law}}$ \\ \\ \\ |
| \begin{align*} | \begin{align*} | ||
| \begin{array}{ll} | \begin{array}{ll} | ||
| - | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & | + | /(a + a + (b \cdot (/a + c) \quad \; )) & |
| \quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
| \end{array} | \end{array} | ||
| \end{align*} | \end{align*} | ||
| - | |||
| << | << | ||
| ---->> | ---->> | ||
| - | example for a simplification with the rule for boolean algebra | + | 3. $\color{blue}{\text{Idempotence}}$ \\ \\ \\ |
| \begin{align*} | \begin{align*} | ||
| \begin{array}{ll} | \begin{array}{ll} | ||
| - | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & | + | /(\color{blue}{a + a} + (b \cdot (/a + c)\quad \;)) & |
| \quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
| \end{array} | \end{array} | ||
| \end{align*} | \end{align*} | ||
| - | |||
| << | << | ||
| ---->> | ---->> | ||
| - | example for a simplification with the rule for boolean algebra | + | 3. $\color{blue}{\text{Idempotence}}$ \\ \\ \\ |
| \begin{align*} | \begin{align*} | ||
| \begin{array}{ll} | \begin{array}{ll} | ||
| - | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & | + | /(a \quad \enspace \: + (b \cdot (/a + c)\quad \;)) & |
| \quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
| \end{array} | \end{array} | ||
| \end{align*} | \end{align*} | ||
| - | |||
| << | << | ||
| ---->> | ---->> | ||
| - | example for a simplification with the rule for boolean algebra | + | 4. $\color{blue}{\text{Distributive Law}}$ \\ \\ \\ |
| \begin{align*} | \begin{align*} | ||
| \begin{array}{ll} | \begin{array}{ll} | ||
| - | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & | + | /(a \quad \enspace |
| \quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
| \end{array} | \end{array} | ||
| \end{align*} | \end{align*} | ||
| - | |||
| << | << | ||
| ---->> | ---->> | ||
| - | example for a simplification with the rule for boolean algebra | + | 4. $\color{blue}{\text{Distributive Law}}$ \\ \\ \\ |
| \begin{align*} | \begin{align*} | ||
| \begin{array}{ll} | \begin{array}{ll} | ||
| - | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & | + | /(a \quad \, + ((b \cdot /a) + (b \cdot c))) & |
| \quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
| \end{array} | \end{array} | ||
| \end{align*} | \end{align*} | ||
| - | |||
| << | << | ||
| ---->> | ---->> | ||
| - | example for a simplification with the rule for boolean algebra | + | 5. $\color{blue}{\text{Associative Law}}$ \\ \\ \\ |
| \begin{align*} | \begin{align*} | ||
| \begin{array}{ll} | \begin{array}{ll} | ||
| - | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & | + | /(\color{blue}{a \quad \, + ((b \cdot /a) + (b \cdot c))}) & |
| \quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
| \end{array} | \end{array} | ||
| \end{align*} | \end{align*} | ||
| - | |||
| << | << | ||
| ---->> | ---->> | ||
| - | example for a simplification with the rule for boolean algebra | + | 5. $\color{blue}{\text{Associative Law}}$ \\ \\ \\ |
| \begin{align*} | \begin{align*} | ||
| \begin{array}{ll} | \begin{array}{ll} | ||
| - | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & | + | /(a \quad \, + \,\,(b \cdot /a) + (b \cdot c)\,\, ) & |
| \quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
| \end{array} | \end{array} | ||
| \end{align*} | \end{align*} | ||
| - | |||
| << | << | ||
| ---->> | ---->> | ||
| - | example for a simplification with the rule for boolean algebra | + | 6. $\color{blue}{\text{Absorption Law}}$ \\ \\ \\ |
| \begin{align*} | \begin{align*} | ||
| \begin{array}{ll} | \begin{array}{ll} | ||
| - | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & | + | /(\color{blue}{a \quad \, + \,\,(b \cdot /a)} + (b \cdot c) \,\, ) & |
| \quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
| \end{array} | \end{array} | ||
| \end{align*} | \end{align*} | ||
| - | |||
| << | << | ||
| ---->> | ---->> | ||
| - | example for a simplification with the rule for boolean algebra | + | 6. $\color{blue}{\text{Absorption Law}}$ \\ \\ \\ |
| \begin{align*} | \begin{align*} | ||
| \begin{array}{ll} | \begin{array}{ll} | ||
| - | \overline{a \lor (b \land (\bar{a} | + | /(a \quad \, + \quad\enspace |
| \quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
| \end{array} | \end{array} | ||
| \end{align*} | \end{align*} | ||
| - | |||
| << | << | ||
| ---->> | ---->> | ||
| - | example for a simplification with the rule for boolean algebra | + | 7. $\color{blue}{\text{Absorption Law}}$ \\ \\ \\ |
| \begin{align*} | \begin{align*} | ||
| \begin{array}{ll} | \begin{array}{ll} | ||
| - | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & | + | /(a \quad \, + \quad\enspace \color{blue}{b \quad\,\, + (b \cdot c)} |
| \quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
| \end{array} | \end{array} | ||
| \end{align*} | \end{align*} | ||
| - | |||
| << | << | ||
| ---->> | ---->> | ||
| - | At first we will switch the representation to the following: | + | 7. $\color{blue}{\text{Absorption Law}}$ \\ \\ \\ |
| \begin{align*} | \begin{align*} | ||
| \begin{array}{ll} | \begin{array}{ll} | ||
| - | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \color{white}{\overline{ab}} | + | /(a \quad \, + \quad\enspace b ) \qquad\qquad\quad\; & |
| - | \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad | + | |
| - | \end{array} | + | |
| - | \end{align*} | + | |
| - | << | + | |
| - | ---->> | + | |
| - | At first we will switch the representation to the following: \\ \\ | + | |
| - | + | ||
| - | \begin{align*} | + | |
| - | \begin{array}{ll} | + | |
| - | /(a + (b \cdot (/a + c) \cdot 1 ) + a ) & | + | |
| \quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
| \end{array} | \end{array} | ||
| Zeile 216: | Zeile 189: | ||
| ---->> | ---->> | ||
| - | 1. $\color{blue}{\text{Neutral Element}}$ \\ \\ \\ | + | 8. $\color{blue}{\text{DeMorgan}}$ \\ \\ \\ |
| \begin{align*} | \begin{align*} | ||
| \begin{array}{ll} | \begin{array}{ll} | ||
| - | /(a + (b \cdot (/a + c) \color{blue}{\cdot 1} ) + a ) & \color{white}{\overline{ab}} | + | \color{blue}{/(a \quad \, + \quad\enspace b )} \qquad\qquad\quad\; |
| \quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
| \end{array} | \end{array} | ||
| Zeile 227: | Zeile 200: | ||
| ---->> | ---->> | ||
| - | 1. $\color{blue}{\text{Neutral Element}}$ \\ \\ \\ | + | 8. $\color{blue}{\text{DeMorgan}}$ \\ \\ \\ |
| - | + | ||
| - | \begin{align*} | + | |
| - | \begin{array}{ll} | + | |
| - | /(a + (b \cdot (/a + c) \quad \; ) + a ) & \color{white}{\overline{ab}} | + | |
| - | \quad\quad\quad\quad\quad\quad | + | |
| - | \end{array} | + | |
| - | \end{align*} | + | |
| - | << | + | |
| - | + | ||
| - | ---->> | + | |
| - | 2. $\color{blue}{\text{Commutative Law}}$ \\ \\ \\ | + | |
| - | + | ||
| - | \begin{align*} | + | |
| - | \begin{array}{ll} | + | |
| - | /(a + \color{blue}{(b \cdot (/a + c) \quad \; ) + a }) & \color{white}{\overline{ab}} | + | |
| - | \quad\quad\quad\quad\quad\quad | + | |
| - | \end{array} | + | |
| - | \end{align*} | + | |
| - | << | + | |
| - | + | ||
| - | ---->> | + | |
| - | 2. $\color{blue}{\text{Commutative Law}}$ \\ \\ \\ | + | |
| - | + | ||
| - | \begin{align*} | + | |
| - | \begin{array}{ll} | + | |
| - | /(a + a + (b \cdot (/a + c) \quad \; )) & \color{white}{\overline{ab}} | + | |
| - | \quad\quad\quad\quad\quad\quad | + | |
| - | \end{array} | + | |
| - | \end{align*} | + | |
| - | << | + | |
| - | + | ||
| - | ---->> | + | |
| - | 3. $\color{blue}{\text{Idempotence}}$ \\ \\ \\ | + | |
| - | + | ||
| - | \begin{align*} | + | |
| - | \begin{array}{ll} | + | |
| - | / | + | |
| - | \quad\quad\quad\quad\quad\quad | + | |
| - | \end{array} | + | |
| - | \end{align*} | + | |
| - | << | + | |
| - | + | ||
| - | ---->> | + | |
| - | 3. $\color{blue}{\text{Idempotence}}$ \\ \\ \\ | + | |
| - | + | ||
| - | \begin{align*} | + | |
| - | \begin{array}{ll} | + | |
| - | /(a \quad \enspace + (b \cdot (/a + c)\quad \;)) & \color{white}{\overline{ab}} | + | |
| - | \quad\quad\quad\quad\quad\quad | + | |
| - | \end{array} | + | |
| - | \end{align*} | + | |
| - | << | + | |
| - | + | ||
| - | ---->> | + | |
| - | 4. $\color{blue}{\text{Distributive Law}}$ \\ \\ \\ | + | |
| - | + | ||
| - | \begin{align*} | + | |
| - | \begin{array}{ll} | + | |
| - | /(a \quad \enspace + (\color{blue}{b \cdot (/a + c)} \quad \;)) & \color{white}{\overline{ab}} | + | |
| - | \quad\quad\quad\quad\quad\quad | + | |
| - | \end{array} | + | |
| - | \end{align*} | + | |
| - | << | + | |
| - | + | ||
| - | ---->> | + | |
| - | 4. $\color{blue}{\text{Distributive Law}}$ \\ \\ \\ | + | |
| \begin{align*} | \begin{align*} | ||
| \begin{array}{ll} | \begin{array}{ll} | ||
| - | /(a \quad \; + ((b \cdot /a) + (b \cdot c)))) & | + | \;/a \quad \, \cdot \quad\enspace |
| \quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
| \end{array} | \end{array} | ||
| \end{align*} | \end{align*} | ||
| << | << | ||