Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
| Beide Seiten der vorigen Revision Vorhergehende Überarbeitung | |||
| electrical_engineering_and_electronics_2:task_5.2.5_with_calc [2025/09/19 15:59] – gelöscht - Externe Bearbeitung (Unbekanntes Datum) 127.0.0.1 | electrical_engineering_and_electronics_2:task_5.2.5_with_calc [2025/09/19 15:59] (aktuell) – ↷ Seitename wurde von electrical_engineering_and_electronics_2:task_1.1.3_with_calc auf electrical_engineering_and_electronics_2:task_5.2.5_with_calc geändert mexleadmin | ||
|---|---|---|---|
| Zeile 1: | Zeile 1: | ||
| + | <panel type=" | ||
| + | |||
| + | <WRAP right> | ||
| + | {{drawio> | ||
| + | </ | ||
| + | |||
| + | Given is an arrangement of electric charges located in a vacuum (see picture on the right). \\ | ||
| + | The charges have the following values: | ||
| + | $Q_1=7 ~\rm{µC}$ (point charge) \\ | ||
| + | $Q_2=5 ~\rm{µC}$ (point charge) \\ | ||
| + | $Q_3=0 ~\rm{C}$ (infinitely extended surface charge) | ||
| + | |||
| + | $\varepsilon_0=8.854\cdot 10^{-12} | ||
| + | |||
| + | 1. calculate the magnitude of the force of $Q_2$ on $Q_1$, without the force effect of $Q_3$. | ||
| + | |||
| + | <button size=" | ||
| + | * Which equation is to be used for the force effect of charges? | ||
| + | * How can the distance between the two charges be determined? | ||
| + | </ | ||
| + | |||
| + | <button size=" | ||
| + | \begin{align*} | ||
| + | F_C &= {{{1} \over {4\pi\cdot\varepsilon}} \cdot {{Q_1 \cdot Q_2} \over {r^2}}} \quad && | \text{with } r=\sqrt{\Delta x^2 + \Delta y^2} \\ | ||
| + | F_C &= {{{1} \over {4\pi\cdot\varepsilon}} \cdot {{Q_1 \cdot Q_2} \over {\Delta x^2 + \Delta y^2}}} \quad && | \text{Insert numerical values, read off distances: } \Delta x = 5~\rm{dm}, \Delta y = 3~\rm{dm} | ||
| + | F_C &= {{{1} \over {4\pi\cdot 8.854\cdot 10^{-12} | ||
| + | \end{align*} | ||
| + | </ | ||
| + | |||
| + | <button size=" | ||
| + | \begin{align*} | ||
| + | |\vec{F}_C| = 1.084 ~\rm{N} \rightarrow 1.1 ~\rm{N} | ||
| + | \end{align*} | ||
| + | \\ | ||
| + | </ | ||
| + | |||
| + | 2. is this force attractive or repulsive? | ||
| + | |||
| + | <button size=" | ||
| + | * What force effect do equally or oppositely charged bodies exhibit on each other? | ||
| + | </ | ||
| + | |||
| + | <button size=" | ||
| + | The force is repulsive because both charges have the same sign. \\ \\ \\ | ||
| + | </ | ||
| + | |||
| + | Now let $Q_2=0$ and the surface charge $Q_3$ be designed in such a way that a homogeneous electric field with $E_3=100 ~\rm{kV/m}$ results. \\ What force (magnitude) now results on $Q_1$? | ||
| + | |||
| + | <button size=" | ||
| + | * Which equation is to be applied for the force action in the homogeneous field? | ||
| + | </ | ||
| + | |||
| + | <button size=" | ||
| + | \begin{align*} | ||
| + | F_C &= E \cdot Q_1 \quad && | \text{Insert numerical values} \\ | ||
| + | F_C &= 100 \cdot 10^3 ~\rm{V/m} \cdot 7 \cdot 10^{-6} ~\rm{C} | ||
| + | \end{align*} | ||
| + | </ | ||
| + | |||
| + | <button size=" | ||
| + | \begin{align*} | ||
| + | | ||
| + | \end{align*} \\ | ||
| + | </ | ||
| + | |||
| + | |||
| + | </ | ||