Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
| Beide Seiten der vorigen Revision Vorhergehende Überarbeitung | |||
| electrical_engineering_and_electronics_1:block22 [2025/12/14 23:26] – mexleadmin | electrical_engineering_and_electronics_1:block22 [2025/12/14 23:36] (aktuell) – mexleadmin | ||
|---|---|---|---|
| Zeile 490: | Zeile 490: | ||
| {{page> | {{page> | ||
| {{page> | {{page> | ||
| + | |||
| + | <panel type=" | ||
| + | |||
| + | A voltage follower is built with an ideal op-amp. \\ | ||
| + | The input is a voltage source $U_{\rm I}=2.0~\rm V$ with internal resistance $R_{\rm S}=10~\rm k\Omega$. | ||
| + | The output drives a load resistor $R_{\rm L}$ which is varied between $100~\Omega$ and $100~\rm k\Omega$. | ||
| + | |||
| + | - Determine the input current drawn from the source for $R_{\rm L}=100~\Omega$ and for $R_{\rm L}=100~\rm k\Omega$. | ||
| + | - Explain briefly why the load does not “pull down” the source voltage in this circuit. | ||
| + | |||
| + | <button size=" | ||
| + | * The input voltage source sees (ideally) infinite input resistance. | ||
| + | </ | ||
| + | |||
| + | <button size=" | ||
| + | * Input current from the source: $I_{\rm S}\approx 0$ for both load values (ideal model). | ||
| + | </ | ||
| + | |||
| + | </ | ||
| + | |||
| + | |||
| + | <panel type=" | ||
| + | |||
| + | A non-inverting amplifier should have a voltage gain of $A_{\rm V}=11$. | ||
| + | |||
| + | - Choose resistor values $R_1$ and $R_2$ in the kOhm-range. | ||
| + | - If $U_{\rm I}=0.25~\rm V$, compute $U_{\rm O}$ (ideal op-amp, no saturation). | ||
| + | - What happens to $U_{\rm O}$ if the op-amp supply rails are $\pm 2.5~\rm V$? | ||
| + | |||
| + | <button size=" | ||
| + | * Rearrange $1+\frac{R_1}{R_2}=11$ to a resistor ratio. | ||
| + | * Check the computed $U_{\rm O}$ against the supply rails (clipping). | ||
| + | </ | ||
| + | |||
| + | <button size=" | ||
| + | * One possible choice: $R_2=10~\rm k\Omega$, $R_1=100~\rm k\Omega$. | ||
| + | * Ideal: $U_{\rm O}=11\cdot 0.25~\rm V=2.75~\rm V$. | ||
| + | * With $\pm 2.5~\rm V$ rails: $U_{\rm O}$ clips near $+2.5~\rm V$ (model-dependent headroom). | ||
| + | </ | ||
| + | |||
| + | </ | ||
| + | |||
| + | |||
| + | <panel type=" | ||
| + | |||
| + | An inverting amplifier is built with $R_1=2.2~\rm k\Omega$ and $R_2=22~\rm k\Omega$. | ||
| + | The non-inverting input is connected to ground. | ||
| + | |||
| + | - Compute the closed-loop gain $A_{\rm V}$. | ||
| + | - For an input $U_{\rm I}(t)=0.30~\rm V~\sin(2\pi\cdot 1\,{\rm kHz}\cdot t)$, determine $U_{\rm O}(t)$. | ||
| + | - State the potential at the inverting input node (the summing node) in the ideal negative-feedback case. | ||
| + | |||
| + | <button size=" | ||
| + | * Use $A_{\rm V}=-\frac{R_2}{R_1}$ for the inverting amplifier. | ||
| + | * Virtual ground means $U_{\rm m}\approx U_{\rm p}=0~\rm V$ (not a physical short). | ||
| + | </ | ||
| + | |||
| + | <button size=" | ||
| + | * $A_{\rm V}=-\frac{22~\rm k\Omega}{2.2~\rm k\Omega}=-10$. | ||
| + | * $U_{\rm O}(t)=-3.0~\rm V~\sin(2\pi\cdot 1\,{\rm kHz}\cdot t)$. | ||
| + | * Summing node potential: approximately $0~\rm V$ (virtual ground). | ||
| + | </ | ||
| + | |||
| + | </ | ||
| + | |||
| + | |||
| + | <panel type=" | ||
| + | |||
| + | An inverting summing amplifier has $R_0=10~\rm k\Omega$, $R_1=10~\rm k\Omega$, and $R_2=20~\rm k\Omega$. | ||
| + | Two inputs are applied: $U_{\rm I1}=+1.0~\rm V$ and $U_{\rm I2}=-0.5~\rm V$. | ||
| + | |||
| + | - Use superposition to compute $U_{\rm O}$. | ||
| + | - Compute the same result by writing the sum directly as a weighted sum. | ||
| + | - Explain briefly why the resistor between the op-amp inputs carries (ideally) no current. | ||
| + | |||
| + | <button size=" | ||
| + | * For each input alone: treat the circuit as an inverting amplifier with gain $-\frac{R_0}{R_i}$. | ||
| + | * Superposition: | ||
| + | * With feedback: $U_{\rm D}\rightarrow 0$ implies negligible current through a resistor between inputs. | ||
| + | </ | ||
| + | |||
| + | <button size=" | ||
| + | * $U_{\rm O(1)}=-\frac{R_0}{R_1}U_{\rm I1}=-\frac{10}{10}\cdot 1.0~\rm V=-1.0~\rm V$. | ||
| + | * $U_{\rm O(2)}=-\frac{R_0}{R_2}U_{\rm I2}=-\frac{10}{20}\cdot(-0.5~\rm V)=+0.25~\rm V$. | ||
| + | * $U_{\rm O}=U_{\rm O(1)}+U_{\rm O(2)}=-0.75~\rm V$. | ||
| + | </ | ||
| + | |||
| + | </ | ||
| + | |||
| + | |||
| + | <panel type=" | ||
| + | |||
| + | A photodiode is modeled as an ideal current source delivering $I_{\rm I}$ into a transimpedance amplifier. | ||
| + | The feedback resistor is $R_1=220~\rm k\Omega$ and the non-inverting input is grounded. | ||
| + | |||
| + | - Determine the transfer resistance $R_{\rm T}=\frac{U_{\rm O}}{I_{\rm I}}$. | ||
| + | - Compute $U_{\rm O}$ for $I_{\rm I}=+2.0~\rm \mu A$. | ||
| + | - What sign does $U_{\rm O}$ have for a positive $I_{\rm I}$ (according to the circuit convention)? | ||
| + | |||
| + | <button size=" | ||
| + | * For the current-to-voltage converter in the given convention: $U_{\rm O}=-R_1 I_{\rm I}$. | ||
| + | * Keep units consistent: $\rm \mu A$ and $\rm k\Omega$. | ||
| + | </ | ||
| + | |||
| + | <button size=" | ||
| + | * $R_{\rm T}=\frac{U_{\rm O}}{I_{\rm I}}=-R_1=-220~\rm k\Omega$. | ||
| + | * $U_{\rm O}=-(220~\rm k\Omega)\cdot (2.0~\rm \mu A)=-0.44~\rm V$. | ||
| + | * For $I_{\rm I}>0$: $U_{\rm O}<0$ (with this sign convention). | ||
| + | </ | ||
| + | |||
| + | </ | ||
| + | |||
| + | |||
| + | <panel type=" | ||
| + | |||
| + | A voltage-to-current converter should generate an output current proportional to an input voltage, with transfer conductance | ||
| + | \[ | ||
| + | S=2.0~\rm mA/V. | ||
| + | \] | ||
| + | Assume the circuit uses a single resistor $R$ to set the current (ideal op-amp behavior), such that approximately $I_{\rm O}\approx \frac{U_{\rm I}}{R}$. | ||
| + | |||
| + | - Determine $R$ for the desired $S$. | ||
| + | - Compute $I_{\rm O}$ for $U_{\rm I}=0.6~\rm V$. | ||
| + | - Briefly name one application of such a circuit. | ||
| + | |||
| + | <button size=" | ||
| + | * If $I_{\rm O}\approx \frac{U_{\rm I}}{R}$, then $S\approx \frac{1}{R}$. | ||
| + | * Convert $2.0~\rm mA/V$ into $\rm A/V$ before inverting. | ||
| + | </ | ||
| + | |||
| + | <button size=" | ||
| + | * $S=2.0~\rm mA/ | ||
| + | * $I_{\rm O}=S\, | ||
| + | * Example application: | ||
| + | </ | ||
| + | |||
| + | </ | ||
| + | |||
| ===== Embedded resources ===== | ===== Embedded resources ===== | ||