Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
electrical_engineering_and_electronics_1:block21 [2025/12/14 22:16] mexleadminelectrical_engineering_and_electronics_1:block21 [2025/12/14 22:26] (aktuell) mexleadmin
Zeile 358: Zeile 358:
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
  
-<panel type="info" title="Exercise 21.1 — Op-amp basics: symbols and signs">+<panel type="info" title="Exercise 21.1 Op-amp basics: symbols and signs">
   * Given an operational amplifier symbol, label the following quantities:   * Given an operational amplifier symbol, label the following quantities:
       - non-inverting input voltage $U_{\rm p}$,       - non-inverting input voltage $U_{\rm p}$,
Zeile 376: Zeile 376:
 </panel> </panel>
  
-<panel type="info" title="Exercise 21.2 — Differential vs single-ended thinking">+<panel type="info" title="Exercise 21.2 Differential vs single-ended thinking">
 An op-amp has $A_{\rm D}=150{'}000$ and is powered from $\pm 12\,\rm V$. An op-amp has $A_{\rm D}=150{'}000$ and is powered from $\pm 12\,\rm V$.
   - Compute $U_{\rm O}$ for $U_{\rm p}=1.002\,\rm V$ and $U_{\rm m}=1.000\,\rm V$ (ideal equation).   - Compute $U_{\rm O}$ for $U_{\rm p}=1.002\,\rm V$ and $U_{\rm m}=1.000\,\rm V$ (ideal equation).
Zeile 383: Zeile 383:
 </panel> </panel>
  
-<panel type="info" title="Exercise 21.3 — Unipolar supply and output biasing">+<panel type="info" title="Exercise 21.3 Unipolar supply and output biasing">
 An op-amp operates from a unipolar supply $0\,\rm V$ to $9\,\rm V$. An op-amp operates from a unipolar supply $0\,\rm V$ to $9\,\rm V$.
   - What output voltage corresponds to “zero differential input” in a typical unipolar configuration?   - What output voltage corresponds to “zero differential input” in a typical unipolar configuration?
Zeile 390: Zeile 390:
 </panel> </panel>
  
-<panel type="info" title="Exercise 21.4 — Unipolar supply and virtual ground intuition">+<panel type="info" title="Exercise 21.4 Unipolar supply and virtual ground intuition">
 An op-amp uses a unipolar supply $0\,\rm V \dots 10\,\rm V$. \\ An op-amp uses a unipolar supply $0\,\rm V \dots 10\,\rm V$. \\
 If you want to amplify a small sinus signal centered around $0\,\rm V$, why is it a problem to connect it directly to an input? If you want to amplify a small sinus signal centered around $0\,\rm V$, why is it a problem to connect it directly to an input?
 </panel> </panel>
  
-<panel type="info" title="Exercise 21.5 — Classify feedback (fast diagnosis)">+<panel type="info" title="Exercise 21.5 Classify feedback (fast diagnosis)">
   * For each statement, mark **true/false** and correct the false ones:   * For each statement, mark **true/false** and correct the false ones:
       -  Feeding back a fraction of the output to the inverting input always creates negative feedback.       -  Feeding back a fraction of the output to the inverting input always creates negative feedback.
Zeile 406: Zeile 406:
 </panel> </panel>
  
-<panel type="info" title="Exercise 21.6 — Saturation and clipping reasoning">+<panel type="info" title="Exercise 21.6 Saturation and clipping reasoning">
 An op-amp is powered from $\pm 5\,\rm V$ (bipolar). The output swing is limited to about $\pm 4\,\rm V$. An op-amp is powered from $\pm 5\,\rm V$ (bipolar). The output swing is limited to about $\pm 4\,\rm V$.
   - If $U_{\rm D}=+50\,\mu\rm V$ and $A_{\rm D}=200{,}000$, compute the ideal $U_{\rm O}$. Is saturation expected?   - If $U_{\rm D}=+50\,\mu\rm V$ and $A_{\rm D}=200{,}000$, compute the ideal $U_{\rm O}$. Is saturation expected?
Zeile 413: Zeile 413:
 </panel> </panel>
  
-<panel type="info" title="Exercise 21.7 — Input bias currents (qualitative + estimate)">+<panel type="info" title="Exercise 21.7 Input bias currents (qualitative + estimate)">
 A sensor with source resistance $R_{\rm S}=1\,\rm M\Omega$ drives the non-inverting input. \\ A sensor with source resistance $R_{\rm S}=1\,\rm M\Omega$ drives the non-inverting input. \\
 The real op-amp dows not only show an internal resistance, but also a small current source on the input pins. \\ The real op-amp dows not only show an internal resistance, but also a small current source on the input pins. \\
Zeile 421: Zeile 421:
 </panel> </panel>
  
-<panel type="info" title="Exercise 21.8 — Output current limit and load selection">+<panel type="info" title="Exercise 21.8 Output current limit and load selection">
 A real op-amp can supply at most $I_{\rm O,max}=20\,\rm mA$. \\  A real op-amp can supply at most $I_{\rm O,max}=20\,\rm mA$. \\ 
 It is intended to drive a load resistor $R_{\rm L}$ from an output voltage of $U_{\rm O}=3\,\rm V$. It is intended to drive a load resistor $R_{\rm L}$ from an output voltage of $U_{\rm O}=3\,\rm V$.