Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
| Beide Seiten der vorigen Revision Vorhergehende Überarbeitung | |||
| electrical_engineering_and_electronics_1:block21 [2025/12/14 22:16] – mexleadmin | electrical_engineering_and_electronics_1:block21 [2025/12/14 22:26] (aktuell) – mexleadmin | ||
|---|---|---|---|
| Zeile 358: | Zeile 358: | ||
| </ | </ | ||
| - | <panel type=" | + | <panel type=" |
| * Given an operational amplifier symbol, label the following quantities: | * Given an operational amplifier symbol, label the following quantities: | ||
| - non-inverting input voltage $U_{\rm p}$, | - non-inverting input voltage $U_{\rm p}$, | ||
| Zeile 376: | Zeile 376: | ||
| </ | </ | ||
| - | <panel type=" | + | <panel type=" |
| An op-amp has $A_{\rm D}=150{' | An op-amp has $A_{\rm D}=150{' | ||
| - Compute $U_{\rm O}$ for $U_{\rm p}=1.002\, | - Compute $U_{\rm O}$ for $U_{\rm p}=1.002\, | ||
| Zeile 383: | Zeile 383: | ||
| </ | </ | ||
| - | <panel type=" | + | <panel type=" |
| An op-amp operates from a unipolar supply $0\,\rm V$ to $9\,\rm V$. | An op-amp operates from a unipolar supply $0\,\rm V$ to $9\,\rm V$. | ||
| - What output voltage corresponds to “zero differential input” in a typical unipolar configuration? | - What output voltage corresponds to “zero differential input” in a typical unipolar configuration? | ||
| Zeile 390: | Zeile 390: | ||
| </ | </ | ||
| - | <panel type=" | + | <panel type=" |
| An op-amp uses a unipolar supply $0\,\rm V \dots 10\,\rm V$. \\ | An op-amp uses a unipolar supply $0\,\rm V \dots 10\,\rm V$. \\ | ||
| If you want to amplify a small sinus signal centered around $0\,\rm V$, why is it a problem to connect it directly to an input? | If you want to amplify a small sinus signal centered around $0\,\rm V$, why is it a problem to connect it directly to an input? | ||
| </ | </ | ||
| - | <panel type=" | + | <panel type=" |
| * For each statement, mark **true/ | * For each statement, mark **true/ | ||
| - Feeding back a fraction of the output to the inverting input always creates negative feedback. | - Feeding back a fraction of the output to the inverting input always creates negative feedback. | ||
| Zeile 406: | Zeile 406: | ||
| </ | </ | ||
| - | <panel type=" | + | <panel type=" |
| An op-amp is powered from $\pm 5\,\rm V$ (bipolar). The output swing is limited to about $\pm 4\,\rm V$. | An op-amp is powered from $\pm 5\,\rm V$ (bipolar). The output swing is limited to about $\pm 4\,\rm V$. | ||
| - If $U_{\rm D}=+50\, | - If $U_{\rm D}=+50\, | ||
| Zeile 413: | Zeile 413: | ||
| </ | </ | ||
| - | <panel type=" | + | <panel type=" |
| A sensor with source resistance $R_{\rm S}=1\,\rm M\Omega$ drives the non-inverting input. \\ | A sensor with source resistance $R_{\rm S}=1\,\rm M\Omega$ drives the non-inverting input. \\ | ||
| The real op-amp dows not only show an internal resistance, but also a small current source on the input pins. \\ | The real op-amp dows not only show an internal resistance, but also a small current source on the input pins. \\ | ||
| Zeile 421: | Zeile 421: | ||
| </ | </ | ||
| - | <panel type=" | + | <panel type=" |
| A real op-amp can supply at most $I_{\rm O, | A real op-amp can supply at most $I_{\rm O, | ||
| It is intended to drive a load resistor $R_{\rm L}$ from an output voltage of $U_{\rm O}=3\,\rm V$. | It is intended to drive a load resistor $R_{\rm L}$ from an output voltage of $U_{\rm O}=3\,\rm V$. | ||