Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
| Beide Seiten der vorigen Revision Vorhergehende Überarbeitung Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
| electrical_engineering_and_electronics_1:block20 [2025/12/02 18:44] – mexleadmin | electrical_engineering_and_electronics_1:block20 [2025/12/16 14:14] (aktuell) – mexleadmin | ||
|---|---|---|---|
| Zeile 1: | Zeile 1: | ||
| - | ====== Block 20 — Electromagnetic Induction | + | ====== Block 20 — Inductance |
| ===== Learning objectives ===== | ===== Learning objectives ===== | ||
| Zeile 44: | Zeile 44: | ||
| < | < | ||
| - | The created field density | + | Given by the [[block16# |
| \begin{align*} | \begin{align*} | ||
| - | \theta(t) &= \int & \vec{H}(t) | + | {H}(t) & |
| - | | + | |
| - | &= \int & \vec{H}(t) \cdot {\rm d}\vec{s} | + | |
| - | & | + | |
| \end{align*} | \end{align*} | ||
| - | With magnetic voltage $\theta(t) = N \cdot i$ this lead to the magnetic flux density $B(t)$ | + | This lead to the magnetic flux density $B(t)$ |
| \begin{align*} | \begin{align*} | ||
| - | N \cdot i &= {H}(t) \cdot l \\ | ||
| - | | ||
| | | ||
| \end{align*} | \end{align*} | ||
| Zeile 69: | Zeile 63: | ||
| \end{align*} | \end{align*} | ||
| - | The changing flux $\Phi$ is now creating an induced electric voltage and current, which counteracts the initial change of the current. | + | The changing flux $\Phi$ is now creating an induced electric voltage and current, which counteracts the initial change of the current. |
| This effect is called **Self Induction**. The induced electric voltage $u_{\rm ind}$ is given by: | This effect is called **Self Induction**. The induced electric voltage $u_{\rm ind}$ is given by: | ||
| Zeile 83: | Zeile 77: | ||
| \end{align*} | \end{align*} | ||
| - | The result means that the induced electric voltage $u_{\rm ind}$ is proportional to the change of the current ${{\rm d}\over{{\rm d}t}}i$. | + | The result means that the induced electric voltage $u_{\rm ind}$ is proportional to the change of the current ${{\rm d}\over{{\rm d}t}}i$. |
| The proportionality factor is also called **Self-inductance** | The proportionality factor is also called **Self-inductance** | ||
| Zeile 166: | Zeile 160: | ||
| \end{align*} | \end{align*} | ||
| + | |||
| + | ==== 6 Inductances in Circuits ==== | ||
| + | |||
| + | Focus here: uncoupled inductors! | ||
| + | |||
| + | === Series Circuits === | ||
| + | |||
| + | Based on $L = {{ \Psi(t)}\over{i}}$ and Kirchhoff' | ||
| + | |||
| + | \begin{align*} L_{\rm eq} &= {{\sum_i \Psi_i}\over{I}} = \sum_i L_i \end{align*} | ||
| + | |||
| + | A similar result can be derived from the induced voltage $u_{ind}= L {{{\rm d}i}\over{{\rm d}t}}$, when taking the situation of a series circuit (i.e. $i_1 = i_2 = i_1 = ... = i_{\rm eq}$ and $u_{\rm eq}= u_1 + u_2 + ...$): | ||
| + | |||
| + | \begin{align*} | ||
| + | & u_{\rm eq} & = & | ||
| + | & L_{\rm eq} {{{\rm d}i_{\rm eq} }\over{{\rm d}t}} & = &L_{1} {{{\rm d}i_{1} }\over{{\rm d}t}} & + &L_{2} {{di_{2} }\over{dt}} &+ ... \\ | ||
| + | & L_{\rm eq} {{{\rm d}i }\over{{\rm d}t}} & = &L_{1} {{{\rm d}i | ||
| + | & L_{\rm eq} & = & | ||
| + | \end{align*} | ||
| + | |||
| + | ===Parallel Circuits === | ||
| + | |||
| + | For parallel circuits, one can also start with the principles based on Kirchhoff' | ||
| + | |||
| + | \begin{align*} u_{\rm eq}= u_1 = u_2 = ... \\ \end{align*} | ||
| + | |||
| + | and Kirchhoff' | ||
| + | |||
| + | \begin{align*} i_{\rm eq}= i_1 + i_2 + ... \\ \end{align*} | ||
| + | |||
| + | Here, the formula for the induced voltage has to be rearranged: | ||
| + | |||
| + | \begin{align*} | ||
| + | | ||
| + | \int u_{\rm ind} {\rm d}t &= L \cdot i \\ | ||
| + | i &= {{1}\over{L}} \cdot \int u_{\rm ind} {\rm d}t \\ | ||
| + | \end{align*} | ||
| + | |||
| + | By this, we get: | ||
| + | |||
| + | \begin{align*} | ||
| + | i_{\rm eq} &=& i_1 & | ||
| + | {{1}\over{L_{\rm eq}}} \cdot \int u_{\rm eq} {\rm d}t &=& {{1}\over{L_1}} \cdot \int u_{1} {\rm d}t &+& {{1}\over{L_2}} \cdot \int u_{2} {\rm d}t &+& ... \\ | ||
| + | {{1}\over{L_{\rm eq}}} \cdot \int u {\rm d}t &=& {{1}\over{L_1}} \cdot \int u {\rm d}t &+& {{1}\over{L_2}} \cdot \int u {\rm d}t &+& ... \\ | ||
| + | {{1}\over{L_{\rm eq}}} &=& {{1}\over{L_1}} | ||
| + | \end{align*} | ||
| + | |||
| + | <callout icon=" | ||
| Zeile 174: | Zeile 216: | ||
| ===== Exercises ===== | ===== Exercises ===== | ||
| + | |||
| {{page> | {{page> | ||