Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
electrical_engineering_and_electronics_1:block16 [2025/11/23 12:18] mexleadminelectrical_engineering_and_electronics_1:block16 [2025/12/16 14:09] (aktuell) – [Recap of the fieldline images] mexleadmin
Zeile 114: Zeile 114:
  
 A longitudinal coil can be seen in <imgref BildNr04>. \\  A longitudinal coil can be seen in <imgref BildNr04>. \\ 
 +
 +The created field density of the coil can be derived from Ampere's Circuital Law
 +
 +\begin{align*} 
 +\theta(t) &= \int & \vec{H}(t) \cdot {\rm d}\vec{s} \\ 
 +          &= \int & \vec{H}_{\rm inner}(t) \cdot {\rm d}\vec{s} & + & \int \vec{H}_{\rm outer}(t) \cdot {\rm d} \vec{s} \\ 
 +          &= \int & \vec{H}(t) \cdot {\rm d}\vec{s}             & + &   0 \\ 
 +          &     & {H}(t) \cdot l \\ 
 +\end{align*}
 +
 The magnetic field in a toroidal coil is often considered as homogenious in the inner volume, when the length $l$ is much larger than the diameter: $l \gg d$. \\ The magnetic field in a toroidal coil is often considered as homogenious in the inner volume, when the length $l$ is much larger than the diameter: $l \gg d$. \\
 With a given number $N$ of windings, the magnetic field strength $H$ is With a given number $N$ of windings, the magnetic field strength $H$ is
Zeile 121: Zeile 131:
 \end{align*} \end{align*}
 \begin{align*} \begin{align*}
-\boxed{H = {{N \cdot I}\over{l}}} \quad \quad \quad \text{longitudinal coil}+\boxed{H = {{N \cdot I}\over{l}}}  \biggr _\text{longitudinal coil}
 \end{align*} \end{align*}
  
Zeile 136: Zeile 146:
   * The major radius $R$: The distance from the center of the entire toroid (the center of the hole) to the center of the circular cross-section of the coil.   * The major radius $R$: The distance from the center of the entire toroid (the center of the hole) to the center of the circular cross-section of the coil.
 For reasons of symmetry, it shall get clear that the field lines form concentric circles. \\ For reasons of symmetry, it shall get clear that the field lines form concentric circles. \\
-Also the magnetic field strength $H$ in a toroidal coil is often considered as homogenious, when $R \gg r$.+Also the magnetic field strength $H$ in a toroidal coil is often considered as homogenious, when $R \gg r$. With a given number $N$ of windings, the magnetic field strength $H$ is
  
 \begin{align*} \begin{align*}
Zeile 142: Zeile 152:
 \end{align*} \end{align*}
 \begin{align*} \begin{align*}
-\boxed{H = {{N \cdot I}\over{2\pi R}}} \quad \quad \quad \text{toroidal coil}+\boxed{H = {{N \cdot I}\over{2\pi R}}} \biggr _\text{toroidal coil}
 \end{align*} \end{align*}