Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
| Beide Seiten der vorigen Revision Vorhergehende Überarbeitung Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
| electrical_engineering_and_electronics_1:block14 [2025/11/02 21:10] – mexleadmin | electrical_engineering_and_electronics_1:block14 [2025/11/02 21:32] (aktuell) – [Conceptual overview] mexleadmin | ||
|---|---|---|---|
| Zeile 35: | Zeile 35: | ||
| ===== Conceptual overview ===== | ===== Conceptual overview ===== | ||
| <callout icon=" | <callout icon=" | ||
| - | - **Analogy: | + | - **Analogy: |
| - | - **Global relations: | + | - **Global relations: |
| - | - **Geometry matters:** Uniform fields (parallel plates) give $E=\text{const}$ and simple $G=\dfrac{\sigma A}{l}$. Curved fields (coax) spread with radius → logarithmic dependence. | + | - **Geometry matters:** Uniform fields (parallel plates) give $E=\text{const}$ and simple $G=\dfrac{\sigma A}{l}$. |
| - **Checks:** Units ($\sigma$ in $\rm S/m$, $G$ in $\rm S$, $R$ in $\Omega$). Limits: \\ $A\!\to\!\infty \Rightarrow R\!\to\!0$ \\ $l\!\to\!0 \Rightarrow R\!\to\!0$ \\ $r_a\!\downarrow r_i \Rightarrow R\!\to\!0$. | - **Checks:** Units ($\sigma$ in $\rm S/m$, $G$ in $\rm S$, $R$ in $\Omega$). Limits: \\ $A\!\to\!\infty \Rightarrow R\!\to\!0$ \\ $l\!\to\!0 \Rightarrow R\!\to\!0$ \\ $r_a\!\downarrow r_i \Rightarrow R\!\to\!0$. | ||
| </ | </ | ||
| Zeile 112: | Zeile 112: | ||
| ===== Exercises ===== | ===== Exercises ===== | ||
| - | ==== Worked examples ==== | ||
| - | ... | + | <panel type=" |
| + | The simulation program of [[http:// | ||
| + | |||
| + | - Open the simulation program via the link | ||
| + | - Select: '' | ||
| + | - You will now see a finite conductor with charge carriers starting at the top end and arriving at the bottom end. | ||
| + | - We now want to observe what happens when the conductor is tapered. | ||
| + | - To do this, select '' | ||
| + | - Consider why more equipotential lines are now accumulating as the conductor is tapered. | ||
| + | - If you additionally draw in the E-field with '' | ||
| + | - Select '' | ||
| + | |||
| + | </ | ||
| + | |||
| + | <panel type=" | ||
| + | |||
| + | In transformer stations sometimes water resistors are used as {{wp> | ||
| + | |||
| + | The water resistor consists of a water basin. In the given basin two quadratic plates with the edge length of $l = 80 ~{\rm cm}$ are inserted with the distance $d$ between them. | ||
| + | The resistivity of the water is $\rho = 0.25 ~\Omega {\rm m}$. The resistor shall dissipate the energy of $P = 4 ~{\rm kW}$ and shall exhibit a homogeneous current field. | ||
| + | |||
| + | - Calculate the required distance of the plates to get a current density of $J = 25 ~{\rm mA/cm^2}$ | ||
| + | - What are the values of the current $I$ and the voltage $U$ at the resistor, such as the internal electric field strength $E$ in the setup? | ||
| + | |||
| + | </ | ||
| ===== Embedded resources ===== | ===== Embedded resources ===== | ||
| <WRAP column half> | <WRAP column half> | ||