Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
| Beide Seiten der vorigen Revision Vorhergehende Überarbeitung Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
| electrical_engineering_and_electronics_1:block12 [2025/11/02 17:26] – mexleadmin | electrical_engineering_and_electronics_1:block12 [2025/11/02 17:50] (aktuell) – [Learning objectives] mexleadmin | ||
|---|---|---|---|
| Zeile 4: | Zeile 4: | ||
| < | < | ||
| After this 90-minute block, you can | After this 90-minute block, you can | ||
| - | - define a **capacitor** and **capacitance** $C=\dfrac{Q}{U}$ and use $C=\varepsilon_0\, | + | - define a **capacitor** and **capacitance** $C$ and use it for an ideal plate capacitor, including unit checks $[C]={\rm F}$. |
| - | - relate fields and material: $\vec{D}=\varepsilon\, | + | - relate fields and material. |
| - compute $C$ for key geometries (parallel plates, coaxial, spherical) and explain how $A$, $d$, $\varepsilon_{\rm r}$ scale $C$. | - compute $C$ for key geometries (parallel plates, coaxial, spherical) and explain how $A$, $d$, $\varepsilon_{\rm r}$ scale $C$. | ||
| </ | </ | ||
| Zeile 32: | Zeile 32: | ||
| ===== Conceptual overview ===== | ===== Conceptual overview ===== | ||
| <callout icon=" | <callout icon=" | ||
| - | - ... | + | - A **capacitor** is two conductors separated by a dielectric. It stores **charge** and **energy** in the electric field; no conduction current flows through the ideal dielectric. : |
| + | - **Capacitance** measures how much charge per volt: $C=\dfrac{Q}{U}$. For parallel plates, $C=\varepsilon_0\varepsilon_{\rm r}\dfrac{A}{d}$ → increase $A$ or $\varepsilon_{\rm r}$, decrease $d$ to raise $C$. : | ||
| + | - **Other geometries: | ||
| </ | </ | ||
| Zeile 89: | Zeile 91: | ||
| {{url> | {{url> | ||
| </ | </ | ||
| + | |||
| + | ==== Symbols ==== | ||
| + | |||
| + | * The symbol of a general capacitor is given be two parallel lines nearby each other. \\ | ||
| + | * Since **electrolytic capacitors** can only withstand voltage in one direction, the **polarisation** is often shown by a curved electrode (US) or a unfilled one (EU). \\ Be aware that electrolytic capacitors can explode, once used in the wrong direction. | ||
| + | |||
| + | {{drawio> | ||
| ==== Designs and types of capacitors ==== | ==== Designs and types of capacitors ==== | ||
| Zeile 174: | Zeile 183: | ||
| ===== Common pitfalls ===== | ===== Common pitfalls ===== | ||
| - | | + | |
| + | | ||
| + | * **Forgetting the field relations.** $U=\int \vec{E}\cdot{\rm d}\vec{s}$ and $Q=\oint \vec{D}\cdot{\rm d}\vec{A}$; without them, layered-dielectric problems are guessed instead of solved. | ||
| + | * **Assuming conduction through the dielectric.** The apparent “current through a capacitor” is displacement-related; | ||
| + | * **Real-part issues.** Ignoring polarity of electrolytics and tolerance spreads ($\pm 10~\%$ and more) causes design errors; pick suitable component types. | ||
| ===== Exercises ===== | ===== Exercises ===== | ||