Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
electrical_engineering_and_electronics_1:block10 [2025/10/31 13:29] mexleadminelectrical_engineering_and_electronics_1:block10 [2025/11/02 17:18] (aktuell) mexleadmin
Zeile 1: Zeile 1:
-====== Block 10 - Field patterns of key geometries ======+====== Block 10 - Field Patterns of key Geometries ======
  
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
Zeile 5: Zeile 5:
 <callout> <callout>
 By the end of this section, you will be able to: By the end of this section, you will be able to:
-  * Sketch the field lines of electric fields. +  * Explain and sketch **electric field lines** for single and multiple charges; state that line **direction** follows the force on a positive test charge and line **density** indicates $|\vec{E}|$. 
-  * Describe and sketch **field lines** for single and multiple charges; relate line **density** to $|\vec{E}|$ and line **direction** to the force on a positive test charge+  * Distinguish **homogeneous** fields (e.g. ideal parallel platesfrom **inhomogeneous** fields (e.g. point charge, edgesand relate $E=\frac{U}{d}$ in plate geometries. 
-  * Classify fields as **homogeneous** (e.g.parallel-plate regionor **inhomogeneous** (e.g.point charge); state typical properties near **conductors** (perpendicular boundary, field-free interior in electrostatics)+  State conductor boundary facts in electrostatics: $\vec{E}$ is **perpendicular** to conducting surfaces and the **interior is field-free**; surfaces are **equipotentials**. 
-  * Compute $|\vec{E}|$ for a **point charge** (Coulomb force), identify $\varepsilon$ and check dimensions.+  * Use the **superposition principle** to construct field patterns
 +  * Compute $|\vec{E}|$ for a **point charge** with $\varepsilon=\varepsilon_0\varepsilon_r$: $\displaystyle |\vec{E}|=\frac{1}{4\pi\varepsilon}\frac{|Q|}{r^2}$.
 </callout> </callout>
  
Zeile 24: Zeile 25:
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
 ===== 90-minute plan ===== ===== 90-minute plan =====
-  Warm-up (8–10 min): +  * **Warm-up (8–10 min)**   
-  Concept build & demonstrations (35–40 min): +    Quick sketchessingle charge, dipole, parallel plates. Poll for rules of field lines and equipotentials. 
-    - **Field lines**: definitiondrawing rules, sources/sinks, no intersections; relate density to magnitude+  * **Concept build & demonstrations (35–40 min)**   
-    - **Homogeneous vs. inhomogeneous** fields; conductor boundary facts (perpendicular $\vec{E}$, interior field-free). +    - Rules for **field lines**: start at $+$end at $-$, no intersections; density $\propto |\vec{E}|$; not particle trajectories  
-  - Guided simulations (20–25 min) +    - **Homogeneous vs. inhomogeneous**: parallel-plate region ($E=\frac{U}{d}$) vs. point/edge fields ($|\vec{E}|\sim 1/r^2near a point charge).   
-  Practice (10–15 min): +    - **Conductors in electrostatics**: interior $E=0$, surface is an **equipotential**, $\vec{E}\perp$ surface; charge crowds near sharp curvature.   
-    - Short worksheet: sketch field lines for two like charges and a dipole; compute $|\vec{E}|$ at a marked point+    **Superposition**: build dipole and two-like-charge patterns from single-charge fields. 
-  Wrap-up (5 min): +  * **Guided simulations (20–25 min)**   
-    Summary map: link to **equipotentials** and energy (next block).+    Move charges, toggle equipotentials, and compare line density to indicated $|\vec{E}|$; vary plate spacing $d$ and discuss $E=\frac{U}{d}$ (units: $\rm V/m$). 
 +  * **Practice (10–15 min)**   
 +    Mini-worksheet: sketch fields for two like charges and a dipole; mark where $|\vec{E}|$ is largest; short calc: $|\vec{E}|$ at $r$ from charge
 +  * **Wrap-up (5 min)**   
 +    Summary map linking **field lines ↔ equipotentials ↔ potential difference** as bridge to capacitors and energy (next blocks).
  
 ===== Conceptual overview ===== ===== Conceptual overview =====
Zeile 39: Zeile 44:
   - **Homogeneous fields** (ideal between large parallel plates): parallel, equally spaced lines; **inhomogeneous fields** elsewhere (e.g., point charges, edges).   - **Homogeneous fields** (ideal between large parallel plates): parallel, equally spaced lines; **inhomogeneous fields** elsewhere (e.g., point charges, edges).
   - **Conductors (electrostatics)**: $\vec{E}$ is perpendicular to the surface; interior is field-free; surface charge arranges to enforce these conditions.   - **Conductors (electrostatics)**: $\vec{E}$ is perpendicular to the surface; interior is field-free; surface charge arranges to enforce these conditions.
 +
 +  * **What field lines mean:** visual aid for $\vec{E}$. \\ they start on positive charge and end on negative charge; their **density** reflects the **magnitude** $|\vec{E}|$; arrows show the **force direction on a positive test charge**. Lines never intersect.
 +  * **Homogeneous vs. inhomogeneous:** between large, parallel plates the field is approximately uniform with $E=\frac{U}{d}$; \\ around localized or curved conductors and point charges the field varies with position (e.g. $|\vec{E}|\propto 1/r^2$ for a point charge).
 +  * **Conductors (electrostatics):** inside an ideal conductor $E=0$; surfaces are equipotentials; \\ $\vec{E}$ meets the surface **perpendicularly**; surface charge re-arranges to enforce these conditions and concentrates at sharp edges.
 +  * **Superposition:** total field is the vector sum of contributions from all charges; use it to construct patterns for dipoles and multi-charge systems.
 +
 </callout> </callout>
  
Zeile 232: Zeile 243:
  
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
 +===== Common pitfalls =====
 +  * Treating field lines as **charge paths**: they are drawings of direction/magnitude of $\vec{E}$, **not** particle trajectories.
 +  * Forgetting the **reference charge sign**: line arrows indicate the force on a **positive** test charge; forces on electrons point opposite to the arrows.
 +  * Mixing up **equipotentials** and field lines: equipotentials are everywhere **perpendicular** to field lines; they do **not** indicate current.
 +  * Assuming the plate field is always perfectly uniform: edge effects make real plate fields **inhomogeneous** away from the central region.
 +  * Ignoring conductor boundary conditions: in electrostatics the interior of a conductor is **field-free** and $\vec{E}$ is **normal** to the surface; any tangential $\vec{E}$ would drive charges until it vanishes.
 +  * Confusing $\vec{E}$ with $\vec{D}$: here we use $\vec{E}$ and **permittivity** $\varepsilon=\varepsilon_0\varepsilon_r$ for $|\vec{E}|=\frac{1}{4\pi\varepsilon}\frac{|Q|}{r^2}$.
  
 +~~PAGEBREAK~~ ~~CLEARFIX~~
 ===== Exercises ===== ===== Exercises =====
 <panel type="info" title="Task 1.1.2 Field lines"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> <panel type="info" title="Task 1.1.2 Field lines"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>