Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Nächste Überarbeitung
Vorhergehende Überarbeitung
electrical_engineering_and_electronics_1:block09 [2025/10/20 02:20] – angelegt mexleadminelectrical_engineering_and_electronics_1:block09 [2025/11/01 00:14] (aktuell) – [Block 09 - Force on charges and electric field strength] mexleadmin
Zeile 1: Zeile 1:
-====== Block 09 — Force on charges and electric field strength ======+====== Block 09 Force on Charges and electric Field Strength ======
  
 +~~PAGEBREAK~~ ~~CLEARFIX~~
 ===== Learning objectives ===== ===== Learning objectives =====
 <callout> <callout>
-  Define / Distinguish / Apply Use ... +By the end of this section, you will be able to: 
 +  * Distinguish **charge** $Q$ (source) from **electric field** $\vec{E}$ (effect in space) and **force** $\vec{F}$ on a test charge $q$; use formula for Coulomb force with correct vector directions and units ($1~{\rm N/C}=1~{\rm V/m}$). 
 +  * Explain and apply the **superposition principle** for forces and fields from multiple charges. 
 +  * Compute $|\vec{E}|$ for a **point charge** (Coulomb force), identify $\varepsilon$ and check dimensions. 
 +  * Determine the force on a charge in an electrostatic field by applying Coulomb's law. Specifically: 
 +    * The force vector in coordinate representation 
 +    * The magnitude of the force vector 
 +    * The angle of the force vector 
 +    * The direction of the force 
 +  * Determine a force vector by superimposing several force vectors using vector calculus.
 </callout> </callout>
  
 +~~PAGEBREAK~~ ~~CLEARFIX~~
 +===== Preparation at Home =====
 +
 +And again: 
 +  * Please read through the following chapter.
 +  * Also here, there are some clips for more clarification under 'Embedded resources'
 +
 +For checking your understanding please do the following exercise:
 +  * 1.2.3
 +
 +~~PAGEBREAK~~ ~~CLEARFIX~~
 ===== 90-minute plan ===== ===== 90-minute plan =====
-  - Warm-up (5–10 min):  +  - Warm-up (8–10 min): 
-    - Recall / Quick quiz ..+    - Quick recall quiz: units of $Q$, $\vec{E}$, $\vec{F}$; passive sign convention for forces on a **positive** test charge. 
-  - Core concepts derivations (6070 min):   +    - Dimensions check: show $1~{\rm N/C}=1~{\rm V/m}$
-    - ... +  - Concept build demonstrations (3540 min): 
-  - Practice (10–20 min): ..+    - Cause–field–effect chain: charges $\Rightarrow \vec{E}(\vec{x}) \Rightarrow \vec{F}=q\,\vec{E}$. 
-  - Wrap-up (5 min): ...+    - Coulomb law $\Rightarrow$ point-charge field magnitude and direction. 
 +    - **Superposition** for two/three charges; vector addition. 
 +    - **Field lines**: definition, drawing rules, sources/sinks, no intersections; relate density to magnitude. 
 +    - **Homogeneous vs. inhomogeneous** fields; conductor boundary facts (perpendicular $\vec{E}$, interior field-free). 
 +  - Guided simulation (20–25 min) 
 +    - Place single and multiple charges; measure $\vec{E}$ at points
 +  - Practice (10–15 min) 
 +    - net field on-axis of two charges; quick peer check
 +  - Wrap-up (5 min): 
 +    - Summary map: charges → $\vec{E}$ → $\vec{F}$; key properties and units.
  
 ===== Conceptual overview ===== ===== Conceptual overview =====
 <callout icon="fa fa-lightbulb-o" color="blue"> <callout icon="fa fa-lightbulb-o" color="blue">
-  - ...+  - **Fields separate cause and effect**: charges set up a state in space (the field) that exists whether or not a test charge is present. 
 +  - **Coulomb field of a point charge:** $\displaystyle \vec{E}(\vec{r})=\frac{1}{4\pi\varepsilon}\frac{Q}{r^2}\,\vec{e}_{\rm r}$ (radial; outward for $Q>0$, inward for $Q<0$)Magnitude $|\vec{E}|$ follows the inverse-square law. 
 +  - The **electric field** is a **vector field** $\vec{E}(\vec{x})$; its **direction** is the direction of the force on a *positive* test charge; its **magnitude** is given by the actinv force and the charge with units $1~{\rm N/C}=1~{\rm V/m}$. 
 +  - **Point charge** model: inverse-square law; direction is radial, outward for $Q>0$, inward for $Q<0$. 
 +  - **Superposition** holds: for multiple sources, $\vec{E}_{\rm total}=\sum_k \vec{E}_k$ (vector sum at the same point).
 </callout> </callout>
  
Zeile 23: Zeile 57:
 ===== Core content ===== ===== Core content =====
  
-==== 1st sub-chapter ====+==== Electric Effects ====
  
-...+Every day life teaches us that there are various charges and their effectsThe image <imgref ImgNr01> depicts a chargeable body that can be charged through charge separation between the sole and the floorThe movement of the foot generates a negative surplus charge in the body, which progressively spreads throughout the bodyA current can flow even through the air if a pointed portion of the body (e.g., a finger) is brought into close proximity to a charge reservoir with no extra charges. 
 +<WRAP> 
 +<imgcaption ImgNr01 | John Tra-Voltage > 
 +</imgcaption> <WRAP> 
 +{{url>https://phet.colorado.edu/sims/html/john-travoltage/latest/john-travoltage_de.html 500,400 noborder}} 
 +</WRAP>
  
-==== 2nd sub-chapter ====+First, we shall define certain terms: 
 +  - **{{wp>Electricity}}** is a catch-all term for any occurrences involving moving and resting charges.  
 +  - **{{wp>Electrostatics}}** is the study of charges at rest and consequently electric fields that do not vary over time. As a result, the electrical quantities have no temporal dependence. \\ For any function of the electric quantities,  ${{{\rm d}  f}\over{{\rm d} t}}=0$ holds mathematically.  
 +  **{{wp>Electrodynamics}}** describes the behavior of moving charges. Hence, electrodynamics covers both changing electric fields and magnetic fields. \\ For the time being, the simple explanation will be that magnetic fields are dependent on current or charge flow. \\ It is no longer true in electrodynamics that the derivative is always necessary for any function of electric values.
  
-...+Only electrostatics is discussed in this chapterFor the time being, magnetic fields are thus excluded. 
 +Furthermore, electrodynamics is not covered in this chapter and is provided in further detail in subsequent chapters.
  
-==== n'th sub-chapter ====+==== Fields ====
  
-...+The concept of a field will now be briefly discussed in more detail. 
 +  - The introduction of the field distinguishes the cause from the effect. 
 +    - The field in space is caused by the charge $Q$. 
 +    - As a result of the field, the charge $q$ in space feels a force. 
 +    - This distinction is brought up again in this chapter. \\ It is also fairly obvious in electrodynamics at high frequencies: the field corresponds to photons, i.e. to a transmission of effects with a finite (light)speed $c$. 
 +  -There are different-dimensional fields, just like physical quantities: 
 +    - In a **scalar field**, each point in space is assigned a single number. \\ For example,  
 +      - a temperature field $T(\vec{x})$ on a weather map or in an object  
 +      - a pressure field $p(\vec{x})$ 
 +    - Each point in space in a **vector field** is assigned several numbers in the form of a vector. This reflects the action as it occurs along the spatial coordinates. \\ As an example. 
 +      - gravitational field $\vec{g}(\vec{x})$ pointing to the object's center of mass. 
 +      - electric field $\vec{E}(\vec{x})$ 
 +      - magnetic field $\vec{H}(\vec{x})$ 
 +  - A tensor field is one in which each point in space is associated with a two- or more-dimensional physical quantity - that is, a tensor. Tensor fields are useful in mechanics (for example, the stress tensor), but they are not required in electrical engineering. 
 +Vector fields are defined as follows:  
 +  - Effects along spatial axes $x$, $y$ and $z$ (Cartesian coordinate system). 
 +  - Effect in magnitude and direction vector (polar coordinate system)
  
-===== Common pitfalls ===== +<panel type="info" title="educational Task "> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
-  * ... +
-  ...   +
-   +
-===== Exercises =====+
  
-==== Quick checks ====+Place a negative charge $Q$ in the middle of the simulation and turn off the electric field. The latter is accomplished by using the hook on the right. The situation is now close to reality because a charge appears to have no effect at first glance.
  
-#@TaskTitle_HTML@##@Lvl_HTML@#~~#@ee1_taskctr#~~.1  Title of the first exercise   +A sample charge $q$ is placed near the existing charge $Q$ for impact analysis (in the simulation, the sample charge is called "sensors")The charge $Q$ is observed to affect a force on the sample charge. At any point in space, the magnitude and direction of this force can be determined. In space, the force behaves similarly to gravity. A field serves to describe the condition space changed by the charge $Q$.
-#@TaskText_HTML@#   +
  
-Here is a simple exercise ...+<imgcaption ImgNr02 | setup for own experiments > 
 +</imgcaption>  
 +{{url>https://phet.colorado.edu/sims/html/charges-and-fields/latest/charges-and-fields_de.html 500,400 noborder}} \\ 
 +Take a charge ($+1~{ \rm nC}$) and position it. \\ Measure the field across a sample charge (a sensor).
  
-#@ResultBegin_HTML~Exercise1~@#+</WRAP></WRAP></panel>
  
-Here is the solution of the Exercise 1+~~PAGEBREAK~~ ~~CLEARFIX~~ 
 +<callout icon="fa fa-exclamation" color="red" title="Note:"> 
 +  - Fields describe a physical state of space. 
 +  - Here, a physical quantity is assigned to each point in space. 
 +  - The electrostatic field is described by a vector field. 
 +</callout>
  
-#@ResultEnd_HTML@# +==== The electric Field ====
-#@TaskEnd_HTML@# +
  
 +We had already considered the charge as the central quantity of electricity in [[block02]] and recognized it as a multiple of the elementary charge. 
 +Now, we want to determine the electric field of charges. For this, a measurement of its magnitude and direction is now required. The **Coulomb force** between two charges $Q_1$ and $Q_2$ is:
  
-#@TaskTitle_HTML@##@Lvl_HTML@#~~#@ee1_taskctr#~~. Title of the 2nd exercise   +\begin{align*} 
-#@TaskText_HTML@#   +F_C = {{{1} \over {4\pi\cdot\varepsilon}} \cdot {{Q_1 \cdot Q_2} \over {r^2}}} 
 +\end{align*}
  
-Here is another simple exercise ...+The force on a (fictitious) sample charge $q$ is now considered to obtain a measure of the magnitude of the electric field.
  
-#@ResultBegin_HTML~Exercise2~@#+\begin{align*} 
 +F_C &= {{{1} \over {4\pi\cdot\varepsilon}} \cdot {{Q_1 \cdot q} \over {r^2}}} \\ 
 +    &= \underbrace{{{1} \over {4\pi\cdot\varepsilon}} \cdot {{Q_1} \over {r^2}}}_\text{=independent of q} \cdot q \\ 
 +\end{align*}
  
-Here is the solution of the Exercise 2+As a result, the left part is a measure of the magnitude of the field, independent of the size of the sample charge $q$. Thus, the magnitude of the electric field is given by
  
-#@TaskEnd_HTML@#  +<WRAP centeralign> 
-#@ResultEnd_HTML@#+$E = {{1} \over {4\pi\cdot\varepsilon}} \cdot {{Q_1} \over {r^2}} \quad$ with $[E]={{[F]}\over{[q]}}=1 ~{ \rm {N}\over{As}}=1 ~{ \rm {N\cdot m}\over{As \cdot m}} = 1 ~{ \rm {V \cdot A \cdot s}\over{As \cdot m}} = 1 ~{ \rm {V}\over{m}}$ 
 +</WRAP>
  
-==== Longer exercises ====+The result is therefore 
 +\begin{align*} 
 +\boxed{F_C E \cdot q} 
 +\end{align*}
  
-#@TaskTitle_HTML@##@Lvl_HTML@#~~#@ee1_taskctr#~~.1  Title of the first longer exercise   +The unit of $E$ is $\rm {{N}\over{As}} =  1 {{V}\over{m}} $
-#@TaskText_HTML@#   +
  
-Here is a longer exercise ...+<callout icon="fa fa-exclamation" color="red" title="Note:">
  
-#@ResultBegin_HTML~LongerExercise1~@#+  - The test charge $q$ is always considered to be posi**__t__**ive (mnemonic: t = +). It is only used as a thought experiment and has no retroactive effect on the sampled charge $Q$. 
 +  - The sampled charge here is always a point charge. 
 +</callout>
  
-Here is the solution of the Exercise 1+<callout icon="fa fa-exclamation" color="red" title="Note:">
  
-#@ResultEnd_HTML@# +At a measuring point $P$, a charge $Q$ produces an electric field $\vec{E}(Q)$. This electric field is given by 
-#@TaskEnd_HTML@# +  - the magnitude $|\vec{E}|=\Bigl| {{1} \over {4\pi\cdot\varepsilon}} \cdot {{Q_1} \over {r^2}} \Bigl| $ and 
 +  - the direction of the force $\vec{F_C}$ experienced by a sample charge on the measurement point $P$. This direction is indicated by the unit vector $\vec{e_{ \rm r}}={{\vec{F_C}}\over{|F_C|}}$ in that direction. 
 +Be aware that in English courses and literature $\vec{E} $ is simply referred to as the electric field, and the electric field strength is the magnitude $|\vec{E}|$. In German notation, the //Elektrische Feldstärke// refers to $\vec{E}$ (magnitude and direction), and the //Elektrische Feld// denotes the general presence of an electrostatic interaction (often without considering exact magnitude). 
 +</callout>
  
-Here are the Exercises given by {{tagtopic>...}}+The direction of the electric field is switchable in <imgref ImgNr02via the "Electric Field" option on the right\\
  
  
-===== Embedded resources =====+==== Direction of the Coulomb force and Superposition ====
  
-<WRAP column half> +In the case of the force, only the direction has been considered so far, e.g., direction towards the sample charge. For future explanations, it is important to include the cause and effect in the naming. This is done by giving the correct labeling of the subscript of the force. In <imgref ImgNr06(a) and (b), the convention is shown: A force $\vec{F}_{21}$ acts on charge $Q_2$ and is caused by charge $Q_1$. As a mnemonic, you can remember "tip-to-tail" (first the effect, then the cause). 
-Here are the youtube resource 1 + 
-{{youtube>...}}+Furthermore, several forces on a charge can be superimposed, resulting in a single, equivalent force. \\ 
 +Strictly speaking, it must hold that $\varepsilon$ is constant in the structure. For example, the resultant force in <imgref ImgNr06> Fig. (c) on $Q_3$ becomes equal to: $\vec{F_3}= \vec{F_{31}}+\vec{F_{32}}$. \\ 
 +<imgref ImgNr06Fig(d) shows that for a charged surface, the force on a charge on top of this surface is always perpendicular to the surface itself 
 + 
 +<WRAP> 
 +<imgcaption ImgNr06 | direction of coulomb force> 
 +</imgcaption> <WRAP>
 +{{drawio>DirectionOfCoulombforce.svg}} \\
 </WRAP> </WRAP>
 +
 +==== Energy required to Displace a Charge in the electric Field ====
 +
 +Now we want to see, whether we can derive the required energy to displace a charge in the electric field. \\
 +
 +Since we know the force on a charge in an electrical field $\vec{E}$ (= Coulomb-Force $\vec{F}_C = q \cdot \vec{E} $), we can borrow some relationships from mechanics for the energy $\Delta W$:
 +
 +\begin{align*}
 +\Delta W = \int \vec{F} d\vec{r} =  q \int \vec{E} d\vec{r} 
 +\end{align*}
 +
 +Looks familiar? Maybe not on the first sight. But we already had defined the fraction of the energy difference per charge ${{\Delta W}\over{q}}$ as voltage $U$! \\
 +Therefore:
 +
 +\begin{align*}
 +\boxed{U = \int \vec{E} d\vec{r} }
 +\end{align*}
 +
 +We will apply this relationship in multiple of the upcoming blocks.
 +
 +~~PAGEBREAK~~ ~~CLEARFIX~~
 +
 +===== Common pitfalls =====
 +  * Treating **force** and **field** as the same thing; forgetting $\vec{F}=q\,\vec{E}$ and the positive-test-charge convention.
 +  * Mixing units (${\rm N}$, ${\rm C}$, ${\rm V}$, ${\rm m}$): not recognizing $1~{\rm N/C}=1~{\rm V/m}$.
 +  * Drawing **field lines** as closed loops or allowing them to **intersect** (source field: start at $+$, end at $-$; no crossings).
 +  * Ignoring **vector addition** in superposition (adding magnitudes instead of vectors).
 +  * Assuming field exists **only** when a test charge is present; the field is a property of space due to sources.
 +  * Using point-charge formulas too near extended objects; not identifying **homogeneous vs. inhomogeneous** regions.
 +  * Forgetting conductor boundary facts: lines must be **perpendicular** to ideal conducting surfaces; interior **$|\vec{E}|=0$** in electrostatics.
 +  
 +===== Exercises =====
 +
 +<panel type="info" title="Task 1.1.1 simple task with charges"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
 +
 +{{youtube>F0IrBhisJA4}}
 +
 +</WRAP></WRAP></panel>
 +
 +
 +{{page>task_1.2.1_with_calc&nofooter}}
 +{{page>task_1.2.2&nofooter}}
 +{{page>task_1.2.3&nofooter}}
 +
 +<panel type="info" title="Task 1.2.4 Superposition of Charges in 1D"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
 +{{youtube>QWOwK-zyEnE}}
 +</WRAP></WRAP></panel>
 +
 +===== Embedded resources =====
 +
 +<callout>
 +The online book 'University Physics II' is strongly recommended as a reference for this chapter. Especially the following chapters: 
 +  * Chapter [[https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_University_Physics_(OpenStax)/Book%3A_University_Physics_II_-_Thermodynamics_Electricity_and_Magnetism_(OpenStax)/05%3A_Electric_Charges_and_Fields|5. Electric Charges and Fields]] 
 +  * Chapter [[https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_University_Physics_(OpenStax)/Book%3A_University_Physics_II_-_Thermodynamics_Electricity_and_Magnetism_(OpenStax)/06%3A_Gauss's_Law|6. Gauss's Law]] 
 +  * Chapter [[https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_University_Physics_(OpenStax)/Book%3A_University_Physics_II_-_Thermodynamics_Electricity_and_Magnetism_(OpenStax)/07%3A_Electric_Potential|7. Electrical Potential]]
 +  * Chapter [[https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_University_Physics_(OpenStax)/Book%3A_University_Physics_II_-_Thermodynamics_Electricity_and_Magnetism_(OpenStax)/08%3A_Capacitance| 8. Capacitance]]
 +</callout>
  
 <WRAP column half> <WRAP column half>
-Here are the youtube resource 2 +Intro into  electric field 
-{{youtube>...}}+{{youtube>2GQTfpDE9DQ}}
 </WRAP> </WRAP>
  
-...+