Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
electrical_engineering_and_electronics_1:block07 [2025/10/17 22:20] mexleadminelectrical_engineering_and_electronics_1:block07 [2025/10/28 00:07] (aktuell) mexleadmin
Zeile 35: Zeile 35:
 <callout icon="fa fa-lightbulb-o" color="blue"> <callout icon="fa fa-lightbulb-o" color="blue">
   - Real sources are modeled by an **ideal source** plus **internal resistance** $R_{\rm i}$; the terminal voltage **drops under load**.     - Real sources are modeled by an **ideal source** plus **internal resistance** $R_{\rm i}$; the terminal voltage **drops under load**.  
-  - **Efficiency** $\eta$ compares *delivered* to *drawn* power. In the simple DC source–load case, $\displaystyle \eta=\frac{R_{\rm L}}{R_{\rm L}+R_{\rm i}}$ (dimensionless). High-efficiency design wants $R_{\rm L}\gg R_{\rm i}$.+  - **Efficiency** $\eta$ compares **delivered** to **drawn** power. In the simple DC source–load case, $\displaystyle \eta=\frac{R_{\rm L}}{R_{\rm L}+R_{\rm i}}$ (dimensionless). High-efficiency design wants $R_{\rm L}\gg R_{\rm i}$.
   - **Utilization rate** $\varepsilon$ compares delivered power to the **maximum** available from the ideal source: $\displaystyle \varepsilon=\frac{R_{\rm L}R_{\rm i}}{(R_{\rm L}+R_{\rm i})^2}$. It peaks at $R_{\rm L}=R_{\rm i}$ with $\varepsilon_{\max}=25~\%$. This is the **maximum power transfer** condition.    - **Utilization rate** $\varepsilon$ compares delivered power to the **maximum** available from the ideal source: $\displaystyle \varepsilon=\frac{R_{\rm L}R_{\rm i}}{(R_{\rm L}+R_{\rm i})^2}$. It peaks at $R_{\rm L}=R_{\rm i}$ with $\varepsilon_{\max}=25~\%$. This is the **maximum power transfer** condition. 
   - Different goals → different $R_{\rm L}$:   - Different goals → different $R_{\rm L}$:
Zeile 125: Zeile 125:
  
 Application: Application:
-  - In __communications engineering__ the impedance matching of the source (the antenna) and the load (the signal-acquiring microcontroller) uses resistors, capacitors, and inductors.  There, we want to get the maximum power out of an antenna. For this purpose, the internal resistance of the source (e.g., a receiver) and the load (e.g., the downstream evaluation) are matched. An example can be seen in this {{electrical_engineering_1:anp084a_en_-_impedance_matching_for_near_field_com.pdf#page=4|application note for near field communication}}.+  - In __communications engineering__ the impedance matching of the source (the antenna) and the load (the signal-acquiring microcontroller) uses resistors, capacitors, and inductors.  There, we want to get the maximum power out of an antenna. For this purpose, the internal resistance of the source (e.g., a receiver) and the load (e.g., the downstream evaluation) are matched. An example can be seen in this {{anp084a_en_-_impedance_matching_for_near_field_commu.pdf#page=4|application note for near field communication}}.
   - Furthermore, also for __photovoltaic cells__ one wants to get the maximum power out. In this case, the concept is often called **{{https://en.wikipedia.org/wiki/Maximum_power_point_tracking|Maximum Power Point Tracking (MPPT)}}  **   - Furthermore, also for __photovoltaic cells__ one wants to get the maximum power out. In this case, the concept is often called **{{https://en.wikipedia.org/wiki/Maximum_power_point_tracking|Maximum Power Point Tracking (MPPT)}}  **
  
Zeile 178: Zeile 178:
 A source has $U_0=9.0~\rm V$, $R_{\rm i}=1.0~\Omega$. A source has $U_0=9.0~\rm V$, $R_{\rm i}=1.0~\Omega$.
   - (a) Choose $R_{\rm L}=9.0~\Omega$. Compute $I_{\rm L}$, $U_{\rm L}$, $P_{\rm L}$, $\eta$, $\varepsilon$.   - (a) Choose $R_{\rm L}=9.0~\Omega$. Compute $I_{\rm L}$, $U_{\rm L}$, $P_{\rm L}$, $\eta$, $\varepsilon$.
-  - (b) Choose $R_{\rm L}=1.0~\Omega$. Repeat. Which choice maximizes $P_{\rm L}$? Which yields higher $\eta$?  +  - (b) Choose $R_{\rm L}=1.0~\Omega$. Repeat. \\ \\ Which choice maximizes $P_{\rm L}$? Which yields higher $\eta$?  
 **Strategy:** use the boxed formulas in this block; for (b) note $R_{\rm L}=R_{\rm i} \Rightarrow \eta=50~\%$.  **Strategy:** use the boxed formulas in this block; for (b) note $R_{\rm L}=R_{\rm i} \Rightarrow \eta=50~\%$. 
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>