Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
| Beide Seiten der vorigen Revision Vorhergehende Überarbeitung Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
| electrical_engineering_and_electronics_1:block07 [2025/09/29 01:27] – mexleadmin | electrical_engineering_and_electronics_1:block07 [2025/10/28 00:07] (aktuell) – mexleadmin | ||
|---|---|---|---|
| Zeile 13: | Zeile 13: | ||
| ~~PAGEBREAK~~ ~~CLEARFIX~~ | ~~PAGEBREAK~~ ~~CLEARFIX~~ | ||
| + | ===== Preparation at Home ===== | ||
| + | And again: | ||
| + | * Please read through the following chapter. | ||
| + | * Also here, there are some clips for more clarification under ' | ||
| + | |||
| + | For checking your understanding please do the following exercises: | ||
| + | * 7.1 | ||
| + | * E3.3.3 | ||
| + | |||
| + | ~~PAGEBREAK~~ ~~CLEARFIX~~ | ||
| ===== 90-minute plan ===== | ===== 90-minute plan ===== | ||
| - Warm-up (8 min): recall passive/ | - Warm-up (8 min): recall passive/ | ||
| Zeile 25: | Zeile 35: | ||
| <callout icon=" | <callout icon=" | ||
| - Real sources are modeled by an **ideal source** plus **internal resistance** $R_{\rm i}$; the terminal voltage **drops under load**. | - Real sources are modeled by an **ideal source** plus **internal resistance** $R_{\rm i}$; the terminal voltage **drops under load**. | ||
| - | - **Efficiency** $\eta$ compares *delivered* to *drawn* power. In the simple DC source–load case, $\displaystyle \eta=\frac{R_{\rm L}}{R_{\rm L}+R_{\rm i}}$ (dimensionless). High-efficiency design wants $R_{\rm L}\gg R_{\rm i}$. | + | - **Efficiency** $\eta$ compares |
| - **Utilization rate** $\varepsilon$ compares delivered power to the **maximum** available from the ideal source: $\displaystyle \varepsilon=\frac{R_{\rm L}R_{\rm i}}{(R_{\rm L}+R_{\rm i})^2}$. It peaks at $R_{\rm L}=R_{\rm i}$ with $\varepsilon_{\max}=25~\%$. This is the **maximum power transfer** condition. | - **Utilization rate** $\varepsilon$ compares delivered power to the **maximum** available from the ideal source: $\displaystyle \varepsilon=\frac{R_{\rm L}R_{\rm i}}{(R_{\rm L}+R_{\rm i})^2}$. It peaks at $R_{\rm L}=R_{\rm i}$ with $\varepsilon_{\max}=25~\%$. This is the **maximum power transfer** condition. | ||
| - Different goals → different $R_{\rm L}$: | - Different goals → different $R_{\rm L}$: | ||
| Zeile 115: | Zeile 125: | ||
| Application: | Application: | ||
| - | - In __communications engineering__ the impedance matching of the source (the antenna) and the load (the signal-acquiring microcontroller) uses resistors, capacitors, and inductors. | + | - In __communications engineering__ the impedance matching of the source (the antenna) and the load (the signal-acquiring microcontroller) uses resistors, capacitors, and inductors. |
| - Furthermore, | - Furthermore, | ||
| Zeile 168: | Zeile 178: | ||
| A source has $U_0=9.0~\rm V$, $R_{\rm i}=1.0~\Omega$. | A source has $U_0=9.0~\rm V$, $R_{\rm i}=1.0~\Omega$. | ||
| - (a) Choose $R_{\rm L}=9.0~\Omega$. Compute $I_{\rm L}$, $U_{\rm L}$, $P_{\rm L}$, $\eta$, $\varepsilon$. | - (a) Choose $R_{\rm L}=9.0~\Omega$. Compute $I_{\rm L}$, $U_{\rm L}$, $P_{\rm L}$, $\eta$, $\varepsilon$. | ||
| - | - (b) Choose $R_{\rm L}=1.0~\Omega$. Repeat. Which choice maximizes $P_{\rm L}$? Which yields higher $\eta$? | + | - (b) Choose $R_{\rm L}=1.0~\Omega$. Repeat. |
| **Strategy: | **Strategy: | ||
| </ | </ | ||
| Zeile 176: | Zeile 186: | ||
| - Compute $\eta_{\rm total}$. | - Compute $\eta_{\rm total}$. | ||
| - If the battery provides $5.0~\rm W$, what power reaches the sensor? | - If the battery provides $5.0~\rm W$, what power reaches the sensor? | ||
| - | </ | ||
| - | |||
| - | <panel type=" | ||
| - | Simplify the following circuits (//NT// for Norton, //TT// for Thevenin) to a single source plus $R_{\rm i}$, then compute $U_{\rm L}$ and $\eta$ for a given $R_{\rm L}$. | ||
| - | < | ||
| - | </ | ||
| - | Tip: Short ideal voltage sources and open ideal current sources to determine the internal resistance. | ||
| </ | </ | ||