Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
electrical_engineering_and_electronics_1:block05 [2025/09/28 23:50] mexleadminelectrical_engineering_and_electronics_1:block05 [2025/10/24 18:29] (aktuell) – [The loaded Voltage Divider] mexleadmin
Zeile 10: Zeile 10:
 </callout> </callout>
  
 +===== Preparation at Home =====
 +
 +And again: 
 +  * Please read through the following chapter.
 +  * Also here, there are some clips for more clarification under 'Embedded resources' (check the text above/below, sometimes only part of the clip is interesting). 
 +
 +For checking your understanding please do the following exercises:
 +  * 2.5.3
 +  * 2.7.8
  
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
Zeile 48: Zeile 57:
  
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
-<panel type="info" title="Exercise 2.5.1 unloaded voltage divider"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>+<panel type="info" title="Exercise"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
 <WRAP> <WRAP>
Zeile 77: Zeile 86:
 $ U_1 = \LARGE{{U} \over {1 + {{R_2}\over{R_L}} + {{R_2}\over{R_1}} }}$ $ U_1 = \LARGE{{U} \over {1 + {{R_2}\over{R_L}} + {{R_2}\over{R_1}} }}$
  
-or on a potentiometer with $k$ and the sum of resistors $R_{\rm s} = R_1 + R_2$:+An alternative representation of the formula sticks more to the application. \\  
 +It uses: 
 +  - the position on a potentiometer given as $k={{R_1}\over{R_1 + R_2}}$ and  
 +  - the sum of resistors $R_{\rm s} = R_1 + R_2$
 +Both are more often used in real setups. 
 + 
 +Mathematically, both parameter lead to $R_1 = k \cdot R_{\rm s}$ and $R_2 = (1 - k) \cdot R_{\rm s}$. \\ 
 +When these tyo relations are included in rhe the formula above, we get
  
-$ U_1 = \LARGE{{k \cdot U} \over { 1 + k \cdot (1-k) \cdot{{R_{\rm s}}\over{R_{\rm L}}} }}$+$ U_1 = \cdot k \cdot \LARGE{{1} \over { 1 + k \cdot (1-k) \cdot{{R_{\rm s}}\over{R_{\rm L}}} }}$
  
 <imgref BildNr65> shows the ratio of the output voltage $U_1$ to the input voltage $U$ (y-axis), in relation to the ratio $k={{R_1}\over{R_1 + R_2}}$.  <imgref BildNr65> shows the ratio of the output voltage $U_1$ to the input voltage $U$ (y-axis), in relation to the ratio $k={{R_1}\over{R_1 + R_2}}$. 
Zeile 112: Zeile 128:
 ==== Strategy for network reduction ==== ==== Strategy for network reduction ====
   * Reshape (without changing node connections), then collapse **clear** series or parallel groups.   * Reshape (without changing node connections), then collapse **clear** series or parallel groups.
-  * If blocked by a three-terminal cluster, apply **Δ–Y** (or **Y–Δ**), then collapse again.+  * (If blocked by a three-terminal cluster, apply **Δ–Y** (or **Y–Δ**), then collapse again. {{wp>Y-Δ_transform|Y–Δ and Δ–Y}} ist not covered and necessary in this course)
   * Repeat until a simple ladder remains; finish with KCL/KVL if needed.    * Repeat until a simple ladder remains; finish with KCL/KVL if needed.