Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
| Beide Seiten der vorigen Revision Vorhergehende Überarbeitung | |||
| electrical_engineering_and_electronics_1:block05 [2025/10/14 09:15] – mexleadmin | electrical_engineering_and_electronics_1:block05 [2025/10/24 18:29] (aktuell) – [The loaded Voltage Divider] mexleadmin | ||
|---|---|---|---|
| Zeile 86: | Zeile 86: | ||
| $ U_1 = \LARGE{{U} \over {1 + {{R_2}\over{R_L}} + {{R_2}\over{R_1}} }}$ | $ U_1 = \LARGE{{U} \over {1 + {{R_2}\over{R_L}} + {{R_2}\over{R_1}} }}$ | ||
| - | or on a potentiometer | + | An alternative representation of the formula sticks more to the application. \\ |
| + | It uses: | ||
| + | - the position | ||
| + | - the sum of resistors $R_{\rm s} = R_1 + R_2$. | ||
| + | Both are more often used in real setups. | ||
| - | $ U_1 = \LARGE{{k \cdot U} \over { 1 + k \cdot (1-k) \cdot{{R_{\rm s}}\over{R_{\rm L}}} }}$ | + | Mathematically, |
| + | When these tyo relations are included in rhe the formula above, we get: | ||
| + | |||
| + | $ U_1 = U \cdot k \cdot \LARGE{{1} \over { 1 + k \cdot (1-k) \cdot{{R_{\rm s}}\over{R_{\rm L}}} }}$ | ||
| <imgref BildNr65> | <imgref BildNr65> | ||