Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
| Beide Seiten der vorigen Revision Vorhergehende Überarbeitung Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
| electrical_engineering_2:the_time-dependent_magnetic_field [2024/05/07 03:50] – mexleadmin | electrical_engineering_2:the_time-dependent_magnetic_field [2025/05/06 11:22] (aktuell) – [Bearbeiten - Panel] mexleadmin | ||
|---|---|---|---|
| Zeile 48: | Zeile 48: | ||
| Therefore, the induced potential difference generated by a conductor or coil moving in a magnetic field is | Therefore, the induced potential difference generated by a conductor or coil moving in a magnetic field is | ||
| - | \begin{align*} \boxed{  | + | \begin{align*} \boxed{  | 
| The negative sign describes the direction in which the induced potential difference drives current around a circuit. However, that direction is most easily determined with a rule known as Lenz’s law, which we will discuss in the next subchapter. | The negative sign describes the direction in which the induced potential difference drives current around a circuit. However, that direction is most easily determined with a rule known as Lenz’s law, which we will discuss in the next subchapter. | ||
| Zeile 91: | Zeile 91: | ||
| \begin{align*} \Phi_{\rm m} = B \cdot A \end{align*} | \begin{align*} \Phi_{\rm m} = B \cdot A \end{align*} | ||
| - | We can calculate the magnitude of the potential difference $|U_{\rm ind}|$ from Faraday’s law: | + | We can calculate the magnitude of the potential difference $|u_{\rm ind}|$ from Faraday’s law: | 
| \begin{align*}  | \begin{align*}  | ||
| - | |U_{\rm ind}| &= |- {{\rm d}\over{{\rm d}t}}(N \cdot \Phi_{\rm m})| \\ | + | |u_{\rm ind}| &= |- {{\rm d}\over{{\rm d}t}}(N \cdot \Phi_{\rm m})| \\ | 
| &= |-N \cdot {{\rm d}\over{{\rm d}t}}(B \cdot A) | \\ | &= |-N \cdot {{\rm d}\over{{\rm d}t}}(B \cdot A) | \\ | ||
| &= |-N \cdot l^2 \cdot {{{\rm d}B}\over{{\rm d}t}}| \\ | &= |-N \cdot l^2 \cdot {{{\rm d}B}\over{{\rm d}t}}| \\ | ||
| Zeile 104: | Zeile 104: | ||
| \begin{align*}  | \begin{align*}  | ||
| - | |I| &= {{ |U_{\rm ind}|}\over{R}} \\ | + | |I| &= {{ |u_{\rm ind}|}\over{R}} \\ | 
| &= {{0.50 ~\rm V}\over{5.0 ~\Omega}} = 0.10 ~\rm A \\ | &= {{0.50 ~\rm V}\over{5.0 ~\Omega}} = 0.10 ~\rm A \\ | ||
| \end{align*}  | \end{align*}  | ||
| Zeile 199: | Zeile 199: | ||
| \begin{align*}  | \begin{align*}  | ||
| - | U_{\rm ind} & | + | u_{\rm ind} & | 
| &= - \int^0_1 \vec{v} \times \vec{B} \cdot {\rm d} \vec{s} \\ | &= - \int^0_1 \vec{v} \times \vec{B} \cdot {\rm d} \vec{s} \\ | ||
| \end{align*} | \end{align*} | ||
| Zeile 205: | Zeile 205: | ||
| For constant $|\vec{v}|$ and $|\vec{B}|$ this leads to: | For constant $|\vec{v}|$ and $|\vec{B}|$ this leads to: | ||
| \begin{align*}  | \begin{align*}  | ||
| - | U_{\rm ind} &= - v \cdot B \cdot l \\ | + | u_{\rm ind} &= - v \cdot B \cdot l \\ | 
| \end{align*} | \end{align*} | ||
| Zeile 216: | Zeile 216: | ||
| The velocity of the rod is $v={\rm d}x/{\rm d}t$. So the induced potential difference will get | The velocity of the rod is $v={\rm d}x/{\rm d}t$. So the induced potential difference will get | ||
| \begin{align*}  | \begin{align*}  | ||
| - | U_{\rm ind} &= - v \cdot B \cdot l \\ | + | u_{\rm ind} &= - v \cdot B \cdot l \\ | 
| &= - {{{\rm d}x}\over{{\rm d}t}} \cdot B \cdot l \\ | &= - {{{\rm d}x}\over{{\rm d}t}} \cdot B \cdot l \\ | ||
| &= - {{B \cdot l \cdot {\rm d}x}\over{{\rm d}t}} \\ | &= - {{B \cdot l \cdot {\rm d}x}\over{{\rm d}t}} \\ | ||
| Zeile 225: | Zeile 225: | ||
| This is an alternative way to deduce Faraday' | This is an alternative way to deduce Faraday' | ||
| - | The current $I_{\rm ind}$ induced in the given circuit is $U_{\rm ind}$ divided by the resistance $R$ | + | The current $i_{\rm ind}$ induced in the given circuit is $u_{\rm ind}$ divided by the resistance $R$ | 
| \begin{align*}  | \begin{align*}  | ||
| - | I_{\rm ind} = {{v \cdot B \cdot l }\over{R}}  | + | i_{\rm ind} = {{v \cdot B \cdot l }\over{R}}  | 
| \end{align*} | \end{align*} | ||
| Zeile 236: | Zeile 236: | ||
| \begin{align*}  | \begin{align*}  | ||
| - | U_{\rm ind} &= - {{\rm d}\over{{\rm dt}}} \cdot \Phi_{\rm m} \\ | + | u_{\rm ind} &= - {{\rm d}\over{{\rm dt}}} \cdot \Phi_{\rm m} \\ | 
| &= - B \cdot l \cdot {{{\rm d}x}\over{{\rm d}t}} \\ | &= - B \cdot l \cdot {{{\rm d}x}\over{{\rm d}t}} \\ | ||
| &= - B \cdot l \cdot v \\ | &= - B \cdot l \cdot v \\ | ||
| Zeile 251: | Zeile 251: | ||
| <button size=" | <button size=" | ||
| - | This is a great example of using the equation motional $U_{\rm ind} = - B \cdot l \cdot v$ | + | This is a great example of using the equation motional $u_{\rm ind} = - B \cdot l \cdot v$ | 
| - | Entering the given values into $U_{\rm ind} = - B \cdot l \cdot v$ gives | + | Entering the given values into $u_{\rm ind} = - B \cdot l \cdot v$ gives | 
| \begin{align*}  | \begin{align*}  | ||
| - | U_{ind} &= - {{{\rm d} \Phi_{\rm m}}\over{{\rm d}t}} \\ | + | u_{ind} &= - {{{\rm d} \Phi_{\rm m}}\over{{\rm d}t}} \\ | 
| &= - B \cdot l \cdot v \\ | &= - B \cdot l \cdot v \\ | ||
| &= - (5.00 \cdot 10^{-5}~\rm T)(20.0 \cdot 10^{3} ~\rm m)(7.80\cdot 10^{3} ~\rm m/s) \\ | &= - (5.00 \cdot 10^{-5}~\rm T)(20.0 \cdot 10^{3} ~\rm m)(7.80\cdot 10^{3} ~\rm m/s) \\ | ||
| Zeile 264: | Zeile 264: | ||
| <button size=" | <button size=" | ||
| - | \begin{align*}  | + | \begin{align*}  | 
| </ | </ | ||
| Zeile 296: | Zeile 296: | ||
| \begin{align*}  | \begin{align*}  | ||
| - | U_{\rm ind} &= |{{\rm d}\over{{\rm d}t}} \cdot \Phi_{\rm m} | \\ | + | u_{\rm ind} &= |{{\rm d}\over{{\rm d}t}} \cdot \Phi_{\rm m} | \\ | 
|             &= B\cdot {{r^2\omega}\over{2}}  |             &= B\cdot {{r^2\omega}\over{2}}  | ||
| \end{align*} | \end{align*} | ||
| Zeile 303: | Zeile 303: | ||
| \begin{align*}  | \begin{align*}  | ||
| - | I_{\rm ind} &= {{|U_{\rm ind}|}\over{R}} \\ | + | i_{\rm ind} &= {{|u_{\rm ind}|}\over{R}} \\ | 
|             &= B\cdot {{r^2\omega}\over{2R}}  |             &= B\cdot {{r^2\omega}\over{2R}}  | ||
| \end{align*} | \end{align*} | ||
| Zeile 316: | Zeile 316: | ||
| The coil is rotated about the $z$-axis through its center at a constant angular velocity $\omega$. | The coil is rotated about the $z$-axis through its center at a constant angular velocity $\omega$. | ||
| - | Obtain an expression for the induced potential difference $U_{\rm ind}$ in the coil. | + | Obtain an expression for the induced potential difference $u_{\rm ind}$ in the coil. | 
| < | < | ||
| Zeile 322: | Zeile 322: | ||
| <button size=" | <button size=" | ||
| - | According to the diagram, the angle between the surface vector $\vec{A}$ and the magnetic field $\vec{B}$ is $\varphi$. The dot product of $\vec{A} \cdot \vec{B}$ simplifies to only the $\cos \varphi$ component of the magnetic field times the area, namely where the magnetic field projects onto the unit surface vector $\vec{A}$. The magnitude of the magnetic field and the area of the loop are fixed over time, which makes the integration  | + | According to the diagram, the angle between the surface vector $\vec{A}$ and the magnetic field $\vec{B}$ is $\varphi$. The dot product of $\vec{A} \cdot \vec{B}$ simplifies to only the $\cos \varphi$ component of the magnetic field times the area, namely where the magnetic field projects onto the unit surface vector $\vec{A}$. The magnitude of the magnetic field and the area of the loop are fixed over time, which makes the integration  | 
| <button size=" | <button size=" | ||
| Zeile 371: | Zeile 371: | ||
| \begin{align*}  | \begin{align*}  | ||
| - | u_{\rm ind} &= N B \cdot \sin \varphi \cdot {{{\rm d} \varphi}\over{{\rm d}t}} | + | u_{\rm ind} &= N B A \cdot \sin \varphi \cdot {{{\rm d} \varphi}\over{{\rm d}t}} | 
| \end{align*}  | \end{align*}  | ||
| </ | </ | ||
| Zeile 377: | Zeile 377: | ||
| <button size=" | <button size=" | ||
| - | We are given that $N=200$, $B=0.80~\rm T$ , $\varphi = 90°$ , $d\varphi=90°=\pi/ | + | We are given that $N=200$, $B=0.80~\rm T$ , $\varphi = 90°$ , $\Delta\varphi=90°=\pi/ | 
| The area of the loop is | The area of the loop is | ||
| Zeile 755: | Zeile 755: | ||
| \begin{align*}  | \begin{align*}  | ||
| L_4 &= \mu_0 \mu_{\rm r,4} \cdot N^2 \cdot {{A }\over {l}} \\ | L_4 &= \mu_0 \mu_{\rm r,4} \cdot N^2 \cdot {{A }\over {l}} \\ | ||
| - | &= \mu_0 \codt 1000 \cdot N^2 \cdot {{A }\over {l}} \\ | + | &= \mu_0 \cdot 1000 \cdot N^2 \cdot {{A }\over {l}} \\ | 
| &= 1000 \cdot L_4 \\ | &= 1000 \cdot L_4 \\ | ||
| \end{align*} | \end{align*} | ||