Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
| Beide Seiten der vorigen Revision Vorhergehende Überarbeitung Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
| electrical_engineering_2:the_magnetostatic_field [2024/04/28 17:43] – mexleadmin | electrical_engineering_2:the_magnetostatic_field [2025/04/29 02:45] (aktuell) – mexleadmin | ||
|---|---|---|---|
| Zeile 520: | Zeile 520: | ||
| </ | </ | ||
| - | Please have a look at the German contents (text, videos, exercises) on the page of the [[https://lx3.mint-kolleg.kit.edu/ | + | Please have a look at the German contents (text, videos, exercises) on the page of the [[https://obkp.mint-kolleg.kit.edu/ | 
| ===== 3.4 Matter in the Magnetic Field ===== | ===== 3.4 Matter in the Magnetic Field ===== | ||
| Zeile 897: | Zeile 897: | ||
| </ | </ | ||
| - | <panel type=" | + | <panel type=" | 
| < | < | ||
| Zeile 907: | Zeile 907: | ||
| Given are the adjacent closed trajectories in the magnetic field of current-carrying conductors (see <imgref BildNr05> | Given are the adjacent closed trajectories in the magnetic field of current-carrying conductors (see <imgref BildNr05> | ||
| - | In each case, the magnetic  | + | In each case, the magnetic  | 
| # | # | ||
| - |   * The magnetic  | + |   * The magnetic  | 
| * The direction of the current and the path have to be considered with the righthand rule. | * The direction of the current and the path have to be considered with the righthand rule. | ||
| Zeile 918: | Zeile 918: | ||
| # | # | ||
| - | a) $\theta_\rm a = - I_1 = - 2~\rm A$ \\ | + | a) $V_{\rm m,a} = - I_1 = - 2~\rm A$ \\ | 
| # | # | ||
| # | # | ||
| - | b) $\theta_\rm b = - I_2 = - 4.5~\rm A$ \\ | + | b) $V_{\rm m,b} = - I_2 = - 4.5~\rm A$ \\ | 
| # | # | ||
| # | # | ||
| - | c) $\theta_\rm c = 0 $ \\ | + | c) $V_{\rm m,c} = 0 $ \\ | 
| # | # | ||
| # | # | ||
| - | d) $\theta_\rm d = + I_1 - I_2 = 2~\rm A - 4.5~\rm A = - 2.5~\rm A$ \\ | + | d) $V_{\rm m,d} = + I_1 - I_2 = 2~\rm A - 4.5~\rm A = - 2.5~\rm A$ \\ | 
| # | # | ||
| # | # | ||
| - | e) $\theta_\rm e = + I_1 = + 2~\rm A$ \\ | + | e) $V_{\rm m,e} = + I_1 = + 2~\rm A$ \\ | 
| # | # | ||
| # | # | ||
| - | f) $\theta_\rm f = 2 \cdot (- I_1) = - 4~\rm A$ \\ | + | f) $V_{\rm m,f} = 2 \cdot (- I_1) = - 4~\rm A$ \\ | 
| # | # | ||
| Zeile 971: | Zeile 971: | ||
| \begin{align*} | \begin{align*} | ||
| I &= {{B \cdot l}\over{\mu \cdot N}} \\ | I &= {{B \cdot l}\over{\mu \cdot N}} \\ | ||
| - |   &= {{1.2 ~\rm T \cdot 1 ~\rm m}\over{4\pi\cdot 10^-7 {\rm{Vs}\over{Am}}  | + |   &= {{1.2 ~\rm T \cdot 1 ~\rm m}\over{4\pi\cdot 10^{-7} {\rm{Vs}\over{Am}}  | 
| \end{align*} | \end{align*} | ||
| Zeile 994: | Zeile 994: | ||
| \begin{align*} | \begin{align*} | ||
| I &= {{B \cdot l}\over{\mu \cdot N}} \\ | I &= {{B \cdot l}\over{\mu \cdot N}} \\ | ||
| - |   &= {{1.2 ~\rm T \cdot 1 ~\rm m}\over{10' | + |   &= {{1.2 ~\rm T \cdot 1 ~\rm m}\over{10' | 
| \end{align*} | \end{align*} | ||
| Zeile 1013: | Zeile 1013: | ||
| <panel type=" | <panel type=" | ||
| - | An electron shall move with the velocity $\vec{v}$ in a plate capacitor parallel to the plates, which have a potential difference $U$ and a distance $d$. | + | An electron  | 
| - | In the vacuum in between the plates  | + | It shall move with the velocity $\vec{v}$ in the plate capacitor parallel to the plates. | 
| + | The plates  | ||
| + | In the vacuum in between the plates, there is also a magnetic field $\vec{B}$  | ||
| < | < | ||
| Zeile 1023: | Zeile 1025: | ||
| Calculate the velocity depending on the other parameters $\vec{v} = f(U, |\vec{B}|, d) $! | Calculate the velocity depending on the other parameters $\vec{v} = f(U, |\vec{B}|, d) $! | ||
| + | |||
| + | <button size=" | ||
| + | * Think about the two forces on the electron from the fields - gravity is ignored. \\ Write their definitions down. | ||
| + | * With which relationship between these two forces does the electron moves through the plate capacitor __parallel__ to the plates? \\ So the trajectory neither get bent up nor down. | ||
| + | * What is the relationship between the $E$-field in the plate capacitor and the electric voltage $U$? | ||
| + | </ | ||
| <button size=" | <button size=" | ||