Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
| Beide Seiten der vorigen Revision Vorhergehende Überarbeitung Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
| electrical_engineering_2:inductances_in_circuits [2024/06/05 03:10] – [Exercises] mexleadmin | electrical_engineering_2:inductances_in_circuits [2024/06/06 11:08] (aktuell) – [Exercises] mexleadmin | ||
|---|---|---|---|
| Zeile 238: | Zeile 238: | ||
| But first, add some more info, which is always true from resonant circuits at the resonant frequency: | But first, add some more info, which is always true from resonant circuits at the resonant frequency: | ||
| - $\omega_0 = {{1}\over{\sqrt{LC}}}$ | - $\omega_0 = {{1}\over{\sqrt{LC}}}$ | ||
| - | - $X_{C0} = X_{L0}$ | + | - $X_{C0} = - X_{L0}$ | 
| - | - $Z = \sqrt{R^2 + (X_L - X_C)^2}$, based on the sum of the impedances $\underline{Z}_{\rm eq} = \underline{X}_R + \underline{X}_C + \underline{X}_L$ and the Pythagorean theorem$ | + | - $Z = \sqrt{R^2 + (X_L + X_C)^2}$, based on the sum of the impedances $\underline{Z}_{\rm eq} = \underline{X}_R + \underline{X}_C + \underline{X}_L$ and the Pythagorean theorem$ | 
| \\ | \\ | ||
| From the task, the following is also known.  | From the task, the following is also known.  | ||
| Zeile 251: | Zeile 251: | ||
| <fs large> | <fs large> | ||
| - | We start with $Z = \sqrt{R^2 + (X_L - X_C)^2}$ for the cases: (1) at the resonant frequency $f_0$ and (2) at the given frequency $f = 1.2 \cdot f_0 $ | + | We start with $Z = \sqrt{R^2 + (X_L + X_C)^2}$ for the cases: (1) at the resonant frequency $f_0$ and (2) at the given frequency $f = 1.2 \cdot f_0 $ | 
| \begin{align*} | \begin{align*} | ||
| (1): && Z_0 &= R \\ | (1): && Z_0 &= R \\ | ||
| - | (2): && Z   & | + | (2): && Z   & | 
| \end{align*} | \end{align*} | ||
| In formula $(2)$ the impedance $X_L$ and $X_C$ are: | In formula $(2)$ the impedance $X_L$ and $X_C$ are: | ||
| * $X_L= \omega \cdot L$ and therefore also $X_L = 1.2 \cdot \omega_0 \cdot L = 1.2 \cdot X_{L0}$ | * $X_L= \omega \cdot L$ and therefore also $X_L = 1.2 \cdot \omega_0 \cdot L = 1.2 \cdot X_{L0}$ | ||
| - | * $X_C= {{1}\over {\omega \cdot C}}$ and therefore also $X_C = {{1}\over {1.2 \cdot \omega \cdot C}} = {{1}\over {1.2}} \cdot X_{C0}$ | + | * $X_C= - {{1}\over {\omega \cdot C}}$ and therefore also $X_C = - {{1}\over {1.2 \cdot \omega \cdot C}} = - {{1}\over {1.2}} \cdot X_{C0}$ | 
| With $X_{C0} = X_{L0}$ we get for $(1)$:  | With $X_{C0} = X_{L0}$ we get for $(1)$:  | ||
| Zeile 269: | Zeile 269: | ||
| \end{align*} | \end{align*} | ||
| - | Since we know that $Z = {{1}\cdot{0.7}} \cdot R$ and $Z_0 = R$, we can start by dividing $(2)$ by $(1)$: | + | Since we know that $Z = {{1}\over{0.7}} \cdot R$ and $Z_0 = R$, we can start by dividing $(2)$ by $(1)$: | 
| \begin{align*} | \begin{align*} | ||
| - | {{(2)}\over{(1)}} : &&  | + | {{(2)}\over{(1)}} : &&  | 
|                     &&  |                     &&  | ||
|                     &&  |                     &&  | ||