Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
| Beide Seiten der vorigen Revision Vorhergehende Überarbeitung Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
| electrical_engineering_2:inductances_in_circuits [2024/06/05 02:13] – [Exercises] mexleadmin | electrical_engineering_2:inductances_in_circuits [2024/06/06 11:08] (aktuell) – [Exercises] mexleadmin | ||
|---|---|---|---|
| Zeile 232: | Zeile 232: | ||
| The solution looks hard at first since no insights for the values of $R$, $C$, and $L$ are given. | The solution looks hard at first since no insights for the values of $R$, $C$, and $L$ are given. | ||
| - | However, it is possible and there are multiple ways to solve it. | + | However, it is possible and there are multiple ways to solve it. \\ \\ | 
| + | |||
| + | <fs large> | ||
| But first, add some more info, which is always true from resonant circuits at the resonant frequency: | But first, add some more info, which is always true from resonant circuits at the resonant frequency: | ||
| - $\omega_0 = {{1}\over{\sqrt{LC}}}$ | - $\omega_0 = {{1}\over{\sqrt{LC}}}$ | ||
| - | - $X_C = X_L$ | + |   - $X_{C0}  | 
| - | - $Z = sqrt{R^2 + (X_L - X_C)^2}$, based on the sum of the impedances $\underline{Z_\rm eq} = \underline{X_R} + \underline{X_C} + \underline{X_L}$ and the Pythagorean theorem$ | + | - $Z = \sqrt{R^2 + (X_L + X_C)^2}$, based on the sum of the impedances $\underline{Z}_{\rm eq} = \underline{X}_R + \underline{X}_C + \underline{X}_L$ and the Pythagorean theorem$ | 
| - | + | \\ | |
| - | Based on the task, the following is also known | + | From the task, the following is also known. | 
|   - Using "a frequency, $20~\%$ larger than the resonance frequency":  |   - Using "a frequency, $20~\%$ larger than the resonance frequency":  | ||
| - $f = 1.2 \cdot f_0 $ and | - $f = 1.2 \cdot f_0 $ and | ||
| - $\omega = 1.2 \cdot \omega_0 $ | - $\omega = 1.2 \cdot \omega_0 $ | ||
|   - The circuit shows a current $30~\%$ lower than the maximum current value:  |   - The circuit shows a current $30~\%$ lower than the maximum current value:  | ||
| - | - the maximum current for the series resonant circuit is given for the minimum impedance Z | + |     - The maximum current for the series resonant circuit is given for the minimum impedance  | 
| + | - Therefore: $Z = {{1}\over{0.7}} \cdot R$ | ||
| + | \\ | ||
| + | <fs large> | ||
| + | We start with $Z = \sqrt{R^2 + (X_L + X_C)^2}$ for the cases: (1) at the resonant frequency $f_0$ and (2) at the given frequency $f = 1.2 \cdot f_0 $ | ||
| + | \begin{align*} | ||
| + | (1): && Z_0 &= R \\ | ||
| + | (2): && Z   & | ||
| \end{align*} | \end{align*} | ||
| + | In formula $(2)$ the impedance $X_L$ and $X_C$ are: | ||
| + | * $X_L= \omega \cdot L$ and therefore also $X_L = 1.2 \cdot \omega_0 \cdot L = 1.2 \cdot X_{L0}$ | ||
| + | * $X_C= - {{1}\over {\omega \cdot C}}$ and therefore also $X_C = - {{1}\over {1.2 \cdot \omega \cdot C}} = - {{1}\over {1.2}} \cdot X_{C0}$ | ||
| + | |||
| + | With $X_{C0} = X_{L0}$ we get for $(1)$:  | ||
| + | |||
| + | \begin{align*} | ||
| + | Z &= \sqrt{R^2 + \left(1.2\cdot X_{L0} - {{1}\over{1.2}} X_{L0} \right)^2} \\ | ||
| + | &= \sqrt{R^2 + X_{L0}^2 \cdot \left(1.2 - {{1}\over{1.2}} \right)^2} \\ | ||
| + | \end{align*} | ||
| + | |||
| + | Since we know that $Z = {{1}\over{0.7}} \cdot R$ and $Z_0 = R$, we can start by dividing $(2)$ by $(1)$: | ||
| + | |||
| + | \begin{align*} | ||
| + | {{(2)}\over{(1)}} : &&  | ||
| + |                     &&  | ||
| + |                     &&  | ||
| + |                     &&  | ||
| + |          && | ||
| + |                 && {{X_{L0}^2}\over{R^2}}  | ||
| + |                     && {{X_{L0}}\over{R}}  | ||
| + |                     && {{1}\over{R}}\cdot \sqrt{ {L} \over {C} }           & | ||
| + | |||
| + | \end{align*} | ||
| # | # | ||