Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
| Beide Seiten der vorigen Revision Vorhergehende Überarbeitung Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
| electrical_engineering_2:inductances_in_circuits [2023/10/03 19:13] – mexleadmin | electrical_engineering_2:inductances_in_circuits [2024/06/06 11:08] (aktuell) – [Exercises] mexleadmin | ||
|---|---|---|---|
| Zeile 216: | Zeile 216: | ||
| <panel type=" | <panel type=" | ||
| - | A $R$-$L$-$C$ series circuit uses a capacity of $C=1 ~\rm µF$. A voltage source with $U_I$ feeds the circuit at $f_1 = 50~\rm Hz$. | + | A $R$-$L$-$C$ series circuit uses a capacity of $C=100 ~\rm µF$. A voltage source with $U_I$ feeds the circuit at $f_1 = 50~\rm Hz$. | 
| - Which values does $R$ and $L$ need to have, when the resonance voltage $|\underline{U}_L|$ and $|\underline{U}_C|$ at $f_1$ shall show the double value of the input voltage $U_I$? | - Which values does $R$ and $L$ need to have, when the resonance voltage $|\underline{U}_L|$ and $|\underline{U}_C|$ at $f_1$ shall show the double value of the input voltage $U_I$? | ||
| Zeile 225: | Zeile 225: | ||
| <panel type=" | <panel type=" | ||
| - | A given $R$-$L$-$C$ series circuit is fed with a frequency, $20~\%$ larger than the resonance frequency keeping the amplitude of the input voltage constant. In this situation, the circuit shows a current  | + | A given $R$-$L$-$C$ series circuit is fed with a frequency, $20~\%$ larger than the resonance frequency keeping the amplitude of the input voltage constant. In this situation, the circuit shows a current  | 
| + | |||
| + | Calculate the Quality $Q = {{1}\over{R}}\sqrt{{{L}\over{C}}}$. | ||
| + | |||
| + | # | ||
| + | The solution looks hard at first since no insights for the values of $R$, $C$, and $L$ are given. | ||
| + | |||
| + | However, it is possible and there are multiple ways to solve it. \\ \\ | ||
| + | |||
| + | <fs large> | ||
| + | |||
| + | But first, add some more info, which is always true from resonant circuits at the resonant frequency: | ||
| + | - $\omega_0 = {{1}\over{\sqrt{LC}}}$ | ||
| + | - $X_{C0} = - X_{L0}$ | ||
| + | - $Z = \sqrt{R^2 + (X_L + X_C)^2}$, based on the sum of the impedances $\underline{Z}_{\rm eq} = \underline{X}_R + \underline{X}_C + \underline{X}_L$ and the Pythagorean theorem$ | ||
| + | \\ | ||
| + | From the task, the following is also known. | ||
| + |   - Using "a frequency, $20~\%$ larger than the resonance frequency": | ||
| + | - $f = 1.2 \cdot f_0 $ and | ||
| + | - $\omega = 1.2 \cdot \omega_0 $ | ||
| + |   - The circuit shows a current  | ||
| + | - The maximum current for the series resonant circuit is given for the minimum impedance $Z$. \\ The minimum impedance $Z$ is given at resonance frequency, and is $Z_{\rm min} = R$ | ||
| + | - Therefore: $Z = {{1}\over{0.7}} \cdot R$ | ||
| + | \\ | ||
| + | <fs large> | ||
| + | |||
| + | We start with $Z = \sqrt{R^2 + (X_L + X_C)^2}$ for the cases: (1) at the resonant frequency $f_0$ and (2) at the given frequency $f = 1.2 \cdot f_0 $ | ||
| + | |||
| + | \begin{align*} | ||
| + | (1): && Z_0 &= R \\ | ||
| + | (2): && Z   & | ||
| + | \end{align*} | ||
| + | |||
| + | In formula $(2)$ the impedance $X_L$ and $X_C$ are: | ||
| + | * $X_L= \omega \cdot L$ and therefore also $X_L = 1.2 \cdot \omega_0 \cdot L = 1.2 \cdot X_{L0}$ | ||
| + | * $X_C= - {{1}\over {\omega \cdot C}}$ and therefore also $X_C = - {{1}\over {1.2 \cdot \omega \cdot C}} = - {{1}\over {1.2}} \cdot X_{C0}$ | ||
| + | |||
| + | With $X_{C0} = X_{L0}$ we get for $(1)$: | ||
| + | |||
| + | \begin{align*} | ||
| + | Z &= \sqrt{R^2 + \left(1.2\cdot X_{L0} - {{1}\over{1.2}} X_{L0} \right)^2} \\ | ||
| + | &= \sqrt{R^2 + X_{L0}^2 \cdot \left(1.2 - {{1}\over{1.2}} \right)^2} \\ | ||
| + | \end{align*} | ||
| + | |||
| + | Since we know that $Z = {{1}\over{0.7}} \cdot R$ and $Z_0 = R$, we can start by dividing $(2)$ by $(1)$: | ||
| + | |||
| + | \begin{align*} | ||
| + | {{(2)}\over{(1)}} : &&  | ||
| + |                     &&  | ||
| + |                     &&  | ||
| + |                     &&  | ||
| + |          && | ||
| + |                 && {{X_{L0}^2}\over{R^2}}  | ||
| + |                     && {{X_{L0}}\over{R}}  | ||
| + |                     && {{1}\over{R}}\cdot \sqrt{ {L} \over {C} }           & | ||
| + | |||
| + | \end{align*} | ||
| + | |||
| + | # | ||
| + | |||
| + | |||
| + | # | ||
| + | |||
| + | \begin{align*} | ||
| + | Q             & | ||
| + | &= 2.782... \\ | ||
| + | \rightarrow Q &= 2.78 | ||
| + | \end{align*} | ||
| + | |||
| + | |||
| + | # | ||
| - | - Calculate the Quality $Q = {{1}\over{R}}\sqrt{{{L}\over{C}}}$. | ||
| </ | </ | ||