Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
| Beide Seiten der vorigen Revision Vorhergehende Überarbeitung Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
| electrical_engineering_2:inductances_in_circuits [2023/09/19 23:51] – mexleadmin | electrical_engineering_2:inductances_in_circuits [2024/06/06 11:08] (aktuell) – [Exercises] mexleadmin | ||
|---|---|---|---|
| Zeile 7: | Zeile 7: | ||
| ==== 6.1.1 Series Circuits ==== | ==== 6.1.1 Series Circuits ==== | ||
| - | Based on $L = {{ \Psi(t)}\over{i}}$ and Kirchhoff' | + | Based on $L = {{ \Psi(t)}\over{i}}$ and Kirchhoff' | 
| - | \begin{align*} L_{eq} &= {{\sum_i \Psi_i}\over{I}} = \sum_i L_i \end{align*} | + | \begin{align*} L_{\rm eq} &= {{\sum_i \Psi_i}\over{I}} = \sum_i L_i \end{align*} | 
| A similar result can be derived from the induced voltage $u_{ind}= L {{{\rm d}i}\over{{\rm d}t}}$, when taking the situation of a series circuit (i.e. $i_1 = i_2 = i_1 = ... = i_{\rm eq}$ and $u_{\rm eq}= u_1 + u_2 + ...$): | A similar result can be derived from the induced voltage $u_{ind}= L {{{\rm d}i}\over{{\rm d}t}}$, when taking the situation of a series circuit (i.e. $i_1 = i_2 = i_1 = ... = i_{\rm eq}$ and $u_{\rm eq}= u_1 + u_2 + ...$): | ||
| Zeile 22: | Zeile 22: | ||
| ==== 6.1.2 Parallel Circuits ==== | ==== 6.1.2 Parallel Circuits ==== | ||
| - | For parallel circuits one can also start with the principles based on Kirchhoff' | + | For parallel circuits, one can also start with the principles based on Kirchhoff' | 
| \begin{align*} u_{\rm eq}= u_1 = u_2 = ... \\ \end{align*} | \begin{align*} u_{\rm eq}= u_1 = u_2 = ... \\ \end{align*} | ||
| Zeile 51: | Zeile 51: | ||
| ==== 6.1.3 in AC Circuits ==== | ==== 6.1.3 in AC Circuits ==== | ||
| - | For AC circuits (i.e. with sinusoidal signals) the impedance $Z$ based on the real part $R$ and imaginary part $X$ has to be considered.  | + | For AC circuits (i.e. with sinusoidal signals) the impedance $Z$ based on the real part $R$ and imaginary part $X$ has to be considered.  | 
| \begin{align*} \underline{Z} = {{\underline{u}}\over{\underline{i}}} = {{1}\over{\underline{i}}} \cdot \underline{u}  | \begin{align*} \underline{Z} = {{\underline{u}}\over{\underline{i}}} = {{1}\over{\underline{i}}} \cdot \underline{u}  | ||
| Zeile 82: | Zeile 82: | ||
| ===== 6.3 Resonance Phenomena ===== | ===== 6.3 Resonance Phenomena ===== | ||
| - | Similar to the approach  | + | Similar to last semester's approach,  | 
| ==== 6.3.1 RLC - Series Resonant Circuit ==== | ==== 6.3.1 RLC - Series Resonant Circuit ==== | ||
| Zeile 216: | Zeile 216: | ||
| <panel type=" | <panel type=" | ||
| - | A $R$-$L$-$C$ series circuit uses a capacity of $C=1 ~\rm µF$. The circuit is fed by a voltage source with $U_I$ at $f_1 = 50~\rm Hz$. | + | A $R$-$L$-$C$ series circuit uses a capacity of $C=100 ~\rm µF$. A voltage source with $U_I$ feeds the circuit  | 
| - Which values does $R$ and $L$ need to have, when the resonance voltage $|\underline{U}_L|$ and $|\underline{U}_C|$ at $f_1$ shall show the double value of the input voltage $U_I$? | - Which values does $R$ and $L$ need to have, when the resonance voltage $|\underline{U}_L|$ and $|\underline{U}_C|$ at $f_1$ shall show the double value of the input voltage $U_I$? | ||
| Zeile 225: | Zeile 225: | ||
| <panel type=" | <panel type=" | ||
| - | A given $R$-$L$-$C$ series circuit is fed with a frequency,  | + | A given $R$-$L$-$C$ series circuit is fed with a frequency, $20~\%$ larger than the resonance frequency keeping the amplitude of the input voltage constant. In this situation, the circuit shows a current  | 
| + | |||
| + | Calculate the Quality $Q = {{1}\over{R}}\sqrt{{{L}\over{C}}}$. | ||
| + | |||
| + | # | ||
| + | The solution looks hard at first since no insights for the values of $R$, $C$, and $L$ are given. | ||
| + | |||
| + | However, it is possible and there are multiple ways to solve it. \\ \\ | ||
| + | |||
| + | <fs large> | ||
| + | |||
| + | But first, add some more info, which is always true from resonant circuits at the resonant frequency: | ||
| + | - $\omega_0 = {{1}\over{\sqrt{LC}}}$ | ||
| + | - $X_{C0} = - X_{L0}$ | ||
| + | - $Z = \sqrt{R^2 + (X_L + X_C)^2}$, based on the sum of the impedances $\underline{Z}_{\rm eq} = \underline{X}_R + \underline{X}_C + \underline{X}_L$ and the Pythagorean theorem$ | ||
| + | \\ | ||
| + | From the task, the following is also known. | ||
| + |   - Using "a frequency, $20~\%$ larger than the resonance frequency": | ||
| + | - $f = 1.2 \cdot f_0 $ and | ||
| + | - $\omega = 1.2 \cdot \omega_0 $ | ||
| + |   - The circuit shows a current  | ||
| + | - The maximum current for the series resonant circuit is given for the minimum impedance $Z$. \\ The minimum impedance $Z$ is given at resonance frequency, and is $Z_{\rm min} = R$ | ||
| + | - Therefore: $Z = {{1}\over{0.7}} \cdot R$ | ||
| + | \\ | ||
| + | <fs large> | ||
| + | |||
| + | We start with $Z = \sqrt{R^2 + (X_L + X_C)^2}$ for the cases: (1) at the resonant frequency $f_0$ and (2) at the given frequency $f = 1.2 \cdot f_0 $ | ||
| + | |||
| + | \begin{align*} | ||
| + | (1): && Z_0 &= R \\ | ||
| + | (2): && Z   & | ||
| + | \end{align*} | ||
| + | |||
| + | In formula $(2)$ the impedance $X_L$ and $X_C$ are: | ||
| + | * $X_L= \omega \cdot L$ and therefore also $X_L = 1.2 \cdot \omega_0 \cdot L = 1.2 \cdot X_{L0}$ | ||
| + | * $X_C= - {{1}\over {\omega \cdot C}}$ and therefore also $X_C = - {{1}\over {1.2 \cdot \omega \cdot C}} = - {{1}\over {1.2}} \cdot X_{C0}$ | ||
| + | |||
| + | With $X_{C0} = X_{L0}$ we get for $(1)$: | ||
| + | |||
| + | \begin{align*} | ||
| + | Z &= \sqrt{R^2 + \left(1.2\cdot X_{L0} - {{1}\over{1.2}} X_{L0} \right)^2} \\ | ||
| + | &= \sqrt{R^2 + X_{L0}^2 \cdot \left(1.2 - {{1}\over{1.2}} \right)^2} \\ | ||
| + | \end{align*} | ||
| + | |||
| + | Since we know that $Z = {{1}\over{0.7}} \cdot R$ and $Z_0 = R$, we can start by dividing $(2)$ by $(1)$: | ||
| + | |||
| + | \begin{align*} | ||
| + | {{(2)}\over{(1)}} : &&  | ||
| + |                     &&  | ||
| + |                     &&  | ||
| + |                     &&  | ||
| + |          && | ||
| + |                 && {{X_{L0}^2}\over{R^2}}  | ||
| + |                     && {{X_{L0}}\over{R}}  | ||
| + |                     && {{1}\over{R}}\cdot \sqrt{ {L} \over {C} }           & | ||
| + | |||
| + | \end{align*} | ||
| + | |||
| + | # | ||
| + | |||
| + | |||
| + | # | ||
| + | |||
| + | \begin{align*} | ||
| + | Q             & | ||
| + | &= 2.782... \\ | ||
| + | \rightarrow Q &= 2.78 | ||
| + | \end{align*} | ||
| + | |||
| + | |||
| + | # | ||
| - | - Calculate the Quality $Q = {{1}\over{R}}\sqrt{{{L}\over{C}}}$. | ||
| </ | </ | ||