Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
Beide Seiten der vorigen Revision Vorhergehende Überarbeitung Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
electrical_engineering_1:task_tb6pi8dgh0m2e2pw_with_calculation [2023/03/10 17:29] – mexleadmin | electrical_engineering_1:task_tb6pi8dgh0m2e2pw_with_calculation [Unbekanntes Datum] (aktuell) – gelöscht - Externe Bearbeitung (Unbekanntes Datum) 127.0.0.1 | ||
---|---|---|---|
Zeile 1: | Zeile 1: | ||
- | {{tag> | ||
- | |||
- | <panel type=" | ||
- | <fs x-large> | ||
- | |||
- | The circuit shown in the following is used to control the brightness when turning on a small light bulb. | ||
- | |||
- | {{drawio> | ||
- | |||
- | The circuit contains a voltage source $U=12 ~\rm{V}$, a switch $S_1$, a resistor of $R_1=20 ~\Omega$ and a capacitor of $C=100 ~\rm{µF}$. \\ | ||
- | The switch $S_2$ to an additional consumer $R_2$ will be considered to be open for the first tasks. At the moment $t_0=0 ~\rm{s}$ the switch $S_1$ is closed, the voltage across the capacitor is $u_c (t_0 )=0 ~\rm{V}$. | ||
- | |||
- | 1. First do not consider the light bulb – it is not connected to the RC-circuit. \\ | ||
- | Calculate the point of time $t_1$ when $u_c (t_1)=0.5\cdot U$. | ||
- | |||
- | |||
- | <button size=" | ||
- | <callout type=" | ||
- | So, here only R_1 and C gives the time constant: $\tau = R_1 \cdot C$ | ||
- | |||
- | The following formula describes the time course of $u_C(t)$ which has to be $u_c (t_1)=0.5\cdot U$: | ||
- | \begin{align*} | ||
- | u_c (t) = U \cdot (1- e^{t/\tau}) = 0.5\cdot U | ||
- | \end{align*} | ||
- | It has to be rearranged to $t$ | ||
- | \begin{align*} | ||
- | (1- e^{t/\tau}) &= 0.5 \\ | ||
- | | ||
- | | ||
- | | ||
- | | ||
- | \end{align*} | ||
- | |||
- | </ | ||
- | |||
- | <button size=" | ||
- | \begin{align*} | ||
- | | ||
- | \end{align*}</ | ||
- | \\ | ||
- | </ | ||
- | |||
- | 2. Calculate the overall energy dissipated by $R_1$ while charging the capacitor $0 ~\rm{V}$ to $12 ~\rm{V}$. | ||
- | |||
- | <button size=" | ||
- | <callout type=" | ||
- | \begin{align*} | ||
- | \Delta W_R &= \Delta W_C \\ | ||
- | & | ||
- | & | ||
- | \end{align*} | ||
- | |||
- | </ | ||
- | |||
- | <button size=" | ||
- | \begin{align*} | ||
- | \Delta W_R = 7.2 ~\rm{mWs} | ||
- | \end{align*}</ | ||
- | \\ | ||
- | </ | ||
- | |||
- | |||
- | 3. Now, consider the light bulb as a resistor of $R_B=20 ~\Omega$, and ignore again the left side ($S_2$ is open). | ||
- | The voltage across the capacitor is again $0 ~\rm{V}$ at the moment $t_0=0 ~\rm{s}$ when the switch $S_1$ is closed. | ||
- | Calculate the voltage $u_c (t_2)$ across the capacitor at $t_2=1 ~\rm{ms}$ after closing the switch. \\ | ||
- | Hint: To solve this, first create an equivalent linear voltage source from $U$, $R_1$ and $R_B$. \\ | ||
- | <button size=" | ||
- | <callout type=" | ||
- | {{drawio> | ||
- | |||
- | An equivalent linear voltage source can be given with $U$, $R_1$ and $R_B$ as seen in yellow. \\ | ||
- | Therefore, the voltage of the equivalent linear voltage source is: $U_s = U \cdot {{R_B}\over{R_1 + R_B}} = 1/2 \cdot U$ | ||
- | The internal resistance is given by substituting the ideal voltage source with its resistance ($=0 ~\Omega$, short-circuit). | ||
- | \begin{align*} | ||
- | R_i &= R_1 || R_B \\ | ||
- | &= 10 ~\Omega | ||
- | \end{align*} | ||
- | |||
- | \begin{align*} | ||
- | u_c (t_2) &= U_s \cdot (1- e^{t_2/ | ||
- | &= {{1}\over{2}} \cdot U \cdot (1- e^{1~\rm{ms}/ | ||
- | \end{align*} | ||
- | |||
- | </ | ||
- | |||
- | <button size=" | ||
- | \begin{align*} | ||
- | u_c (t_2) = 3.79 ~\rm{V} | ||
- | \end{align*}</ | ||
- | \\ | ||
- | </ | ||
- | |||
- | |||
- | 4. Explain (without calculation) how the situation in 3. would change once also $S_2$ is closed from the beginning on. | ||
- | |||
- | <button size=" | ||
- | It does not change anything. The ideal voltage source $U$ provides the voltage of $U=12~\rm{V}$ independent of this resistor. \\ | ||
- | On an alternative view, one can try to create an equivalent linear voltage source again. Then, the internal resistance is given by substituting the ideal voltage source is again short-circuiting $R_2$. | ||
- | </ | ||
- | |||
- | |||
- | </ | ||