Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
| Beide Seiten der vorigen Revision Vorhergehende Überarbeitung Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
| electrical_engineering_1:introduction_in_alternating_current_technology [2023/12/20 09:53] – mexleadmin | electrical_engineering_1:introduction_in_alternating_current_technology [2024/12/04 14:43] (aktuell) – [Bearbeiten - Panel] mexleadmin | ||
|---|---|---|---|
| Zeile 476: | Zeile 476: | ||
| Up to now, we used the following formula to represent alternating voltages: | Up to now, we used the following formula to represent alternating voltages: | ||
| - | $$u(t)= \sqrt{2}  | + | $$u(t)= \sqrt{2} U \cdot \sin (\varphi)$$ | 
| This is now interpreted as the instantaneous value of a complex vector $\underline{u}(t)$, | This is now interpreted as the instantaneous value of a complex vector $\underline{u}(t)$, | ||
| Zeile 505: | Zeile 505: | ||
| Therefore, the known properties of complex numbers from Mathematics 101 can be applied: | Therefore, the known properties of complex numbers from Mathematics 101 can be applied: | ||
| * A multiplication with $j$ equals a phase shift of $+90°$ | * A multiplication with $j$ equals a phase shift of $+90°$ | ||
| - | * A multiplication with $-j$ equals a phase shift of $-90°$ | + | * A multiplication with ${{1}\over{j}}$ equals a phase shift of $-90°$ | 
| ===== 6.5 Complex Impedance ===== | ===== 6.5 Complex Impedance ===== | ||
| Zeile 542: | Zeile 542: | ||
| * $X = Z \sin \varphi$ | * $X = Z \sin \varphi$ | ||
| - | value - and therefore a phasor - can simply  | + | y ==== 6.5.2 Application on pure Loads ==== | 
| With the complex impedance in mind, the <tabref tab01> can be expanded to: | With the complex impedance in mind, the <tabref tab01> can be expanded to: | ||
| Zeile 556: | Zeile 556: | ||
| \\ \\ | \\ \\ | ||
| The relationship between ${\rm j}$ and integral calculus should be clear:  | The relationship between ${\rm j}$ and integral calculus should be clear:  | ||
| - |   - The derivative of a sinusoidal value - and therefore a phasor - can simply be written as " | + |   - The derivative of a sinusoidal value - and therefore a phasor - can simply be written as " | 
| - |   - The integral of a sinusoidal value - and therefore a phasor - can simply be written as " | + |   - The integral of a sinusoidal value - and therefore a phasor - can simply be written as " | 
| \begin{align*} | \begin{align*} | ||
|                      \int {\rm e}^{{\rm j}(\omega t + \varphi_x)}  |                      \int {\rm e}^{{\rm j}(\omega t + \varphi_x)}  | ||
| - | = {{1}\over{\rm j}} \cdot {\rm e}^{{\rm j}(\omega t + \varphi_x)} | + | = {{1}\over{\rm j\omega}} \cdot {\rm e}^{{\rm j}(\omega t + \varphi_x)} | 
| - |   =          | + | = -{{\rm j}\over{\omega}} \cdot {\rm e}^{{\rm j}(\omega t + \varphi_x)} | 
| \end{align*} | \end{align*} | ||
| </ | </ | ||
| Zeile 614: | Zeile 614: | ||
| <panel type=" | <panel type=" | ||
| - | A coil has a reactance  | + | A coil has a impedance  | 
| - $85 ~\Omega$ | - $85 ~\Omega$ | ||
| - $120 ~\Omega$ | - $120 ~\Omega$ | ||
| Zeile 650: | Zeile 650: | ||
| <panel type=" | <panel type=" | ||
| - | A capacitor with $5 ~{\rm µF}$ is connected to a voltage source which generates $U_\sim = 200 ~{\rm V}$. At which frequencies the following  | + | A capacitor with $5 ~{\rm µF}$ is connected to a voltage source which generates $U_\sim = 200 ~{\rm V}$. At which frequencies the following  | 
| - $0.5 ~\rm A$ | - $0.5 ~\rm A$ | ||
| - $0.8 ~\rm A$ | - $0.8 ~\rm A$ | ||