Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
| Beide Seiten der vorigen Revision Vorhergehende Überarbeitung Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
| electrical_engineering_1:introduction_in_alternating_current_technology [2023/03/27 09:21] – mexleadmin | electrical_engineering_1:introduction_in_alternating_current_technology [2024/12/04 14:43] (aktuell) – [Bearbeiten - Panel] mexleadmin | ||
|---|---|---|---|
| Zeile 1: | Zeile 1: | ||
| - | ====== 6. Introduction to Alternating Current Technology ====== | + | ====== 6 Introduction to Alternating Current Technology ====== | 
| Up to now, we had analyzed DC signals (chapters 1. - 4.) and abrupt voltage changes for (dis)charging capacitors (chapter 5.). In households, we use alternating voltage (AC) instead of a constant voltage (DC). This is due to at least three main facts | Up to now, we had analyzed DC signals (chapters 1. - 4.) and abrupt voltage changes for (dis)charging capacitors (chapter 5.). In households, we use alternating voltage (AC) instead of a constant voltage (DC). This is due to at least three main facts | ||
| Zeile 152: | Zeile 152: | ||
| Since $sin(\omega t)\geq0$ for $t\in [0,\pi]$, the integral can be changed and the absolute value bars can be excluded like the following  | Since $sin(\omega t)\geq0$ for $t\in [0,\pi]$, the integral can be changed and the absolute value bars can be excluded like the following  | ||
| \begin{align*} | \begin{align*} | ||
| - | \overline{|X|}  | + | \overline{|X|}  | 
| - |                 | + |                   &= 2 \cdot {{1}\over{T}}\cdot [-\hat{X}\cdot {{T}\over{2\pi}}\cdot  | 
| - |                 | + |                   &= 2 \cdot {{1}\over{T}}\cdot {{T}\over{2\pi}}\cdot  | 
| - |                 | + | &= {{1}\over{\pi}}\cdot \hat{X} \cdot [1+1] \\ | 
| - | \boxed{\overline{|X|} = {{2}\over{\pi}}\cdot \hat{X} \approx 0.6366 \cdot \hat{X}}\\ | + | \boxed{\overline{|X|}  | 
| + | = {{2}\over{\pi}}\cdot \hat{X} \approx 0.6366 \cdot \hat{X}}\\ | ||
| \end{align*} | \end{align*} | ||
| </ | </ | ||
| Zeile 175: | Zeile 176: | ||
| \begin{align*} | \begin{align*} | ||
| - |               | + |               | 
| - | U_{DC} \cdot I_{\rm DC} &= {{1}\over{T}} \int_{0}^{T} u(t) \cdot i(t) {\rm d}t \\ | + | U_{DC} \cdot I_{\rm DC}    | 
| - |     | + |       | 
| - |             | + |               | 
| - | \rightarrow I_{\rm DC} &= \sqrt{{{1}\over{T}} \int_{0}^{T} i^2(t) {\rm d}t}   | + | \rightarrow  | 
| \end{align*} | \end{align*} | ||
| Zeile 204: | Zeile 205: | ||
| \begin{align*} | \begin{align*} | ||
| X & | X & | ||
| - |   & | + |   & | 
| - |   & | + |   & | 
|   & |   & | ||
|   & |   & | ||
| Zeile 295: | Zeile 296: | ||
| Now, we insert the functions representing the instantaneous signals and calculate the derivative: | Now, we insert the functions representing the instantaneous signals and calculate the derivative: | ||
| \begin{align*} | \begin{align*} | ||
| - |   | + |   | 
| - |                                              & | + |                                              & | 
| - |         {I}\cdot \sin(\omega t + \varphi_i)  | + |         {I}\cdot \sin(\omega t + \varphi_i)  | 
| \end{align*} | \end{align*} | ||
| Zeile 309: | Zeile 310: | ||
| \omega t + \varphi_i &= \omega t + \varphi_u + {{1}\over{2}}\pi \\ | \omega t + \varphi_i &= \omega t + \varphi_u + {{1}\over{2}}\pi \\ | ||
|             |             | ||
| - | \varphi_u -\varphi_i & | + | \varphi_u -\varphi_i & | 
| \end{align*} | \end{align*} | ||
| Zeile 353: | Zeile 354: | ||
| \begin{align*} | \begin{align*} | ||
|   |   | ||
| - |                                              & | + |                                              & | 
| - |           | + |           | 
| \end{align*} | \end{align*} | ||
| Zeile 366: | Zeile 367: | ||
| \omega t + \varphi_u &= \omega t + \varphi_i + {{1}\over{2}}\pi \\ | \omega t + \varphi_u &= \omega t + \varphi_i + {{1}\over{2}}\pi \\ | ||
|             |             | ||
| - | \boxed{\varphi = \varphi_u -\varphi_i = + {{1}\over{2}}\pi } | + | \boxed{\varphi = \varphi_u -\varphi_i = + {{1}\over{2}}\pi } | 
| \end{align*} | \end{align*} | ||
| Zeile 475: | Zeile 476: | ||
| Up to now, we used the following formula to represent alternating voltages: | Up to now, we used the following formula to represent alternating voltages: | ||
| - | $$u(t)= \sqrt{2}  | + | $$u(t)= \sqrt{2} U \cdot \sin (\varphi)$$ | 
| This is now interpreted as the instantaneous value of a complex vector $\underline{u}(t)$, | This is now interpreted as the instantaneous value of a complex vector $\underline{u}(t)$, | ||
| Zeile 495: | Zeile 496: | ||
| \underline{u}(t) & | \underline{u}(t) & | ||
|                  & |                  & | ||
| - | \cdot {\rm e}^{{\rm j} \omega t } \\ | + | \cdot {\rm e}^{{\rm j} \omega t} \\ | 
|                  & |                  & | ||
| \end{align*} | \end{align*} | ||
| Zeile 504: | Zeile 505: | ||
| Therefore, the known properties of complex numbers from Mathematics 101 can be applied: | Therefore, the known properties of complex numbers from Mathematics 101 can be applied: | ||
| * A multiplication with $j$ equals a phase shift of $+90°$ | * A multiplication with $j$ equals a phase shift of $+90°$ | ||
| - | * A multiplication with $-j$ equals a phase shift of $-90°$ | + | * A multiplication with ${{1}\over{j}}$ equals a phase shift of $-90°$ | 
| ===== 6.5 Complex Impedance ===== | ===== 6.5 Complex Impedance ===== | ||
| Zeile 541: | Zeile 542: | ||
| * $X = Z \sin \varphi$ | * $X = Z \sin \varphi$ | ||
| - | ==== 6.5.2 Application on pure Loads ==== | + | y ==== 6.5.2 Application on pure Loads ==== | 
| With the complex impedance in mind, the <tabref tab01> can be expanded to: | With the complex impedance in mind, the <tabref tab01> can be expanded to: | ||
| Zeile 555: | Zeile 556: | ||
| \\ \\ | \\ \\ | ||
| The relationship between ${\rm j}$ and integral calculus should be clear:  | The relationship between ${\rm j}$ and integral calculus should be clear:  | ||
| - |   - The derivative of a sinusoidal value - and therefore a phasor - can simply be written as " | + |   - The derivative of a sinusoidal value - and therefore a phasor - can simply be written as " | 
| - |   - The integral of a sinusoidal value - and therefore a phasor - can simply be written as " | + |   - The integral of a sinusoidal value - and therefore a phasor - can simply be written as " | 
| + | \begin{align*} | ||
| + |                      \int {\rm e}^{{\rm j}(\omega t + \varphi_x)}  | ||
| + |    | ||
| + |    | ||
| + | \end{align*} | ||
| + | </ | ||
| Once a fixed input voltage is given, the voltage phasor $\underline{U}$, | Once a fixed input voltage is given, the voltage phasor $\underline{U}$, | ||
| Zeile 607: | Zeile 614: | ||
| <panel type=" | <panel type=" | ||
| - | A coil has a reactance  | + | A coil has a impedance  | 
| - $85 ~\Omega$ | - $85 ~\Omega$ | ||
| - $120 ~\Omega$ | - $120 ~\Omega$ | ||
| Zeile 643: | Zeile 650: | ||
| <panel type=" | <panel type=" | ||
| - | A capacitor with $5 ~{\rm µF}$ is connected to a voltage source which generates $U_\sim = 200 ~{\rm V}$. At which frequencies the following  | + | A capacitor with $5 ~{\rm µF}$ is connected to a voltage source which generates $U_\sim = 200 ~{\rm V}$. At which frequencies the following  | 
| - $0.5 ~\rm A$ | - $0.5 ~\rm A$ | ||
| - $0.8 ~\rm A$ | - $0.8 ~\rm A$ | ||
| Zeile 810: | Zeile 817: | ||
| in the following, some of the numbers are given.  | in the following, some of the numbers are given.  | ||
| - | Calculate the RMS value of the missing  | + | Calculate the RMS value of the missing  | 
| - $I_R = 3~\rm A$, $I_L = 1 ~\rm A$, $I_C = 5 ~\rm A$, $I=?$ | - $I_R = 3~\rm A$, $I_L = 1 ~\rm A$, $I_C = 5 ~\rm A$, $I=?$ | ||
| - $I_R = ?$, $I_L = 1.2~\rm A$, $I_C = 0.4~\rm A$, $I=1~\rm A$ | - $I_R = ?$, $I_L = 1.2~\rm A$, $I_C = 0.4~\rm A$, $I=1~\rm A$ | ||
| Zeile 817: | Zeile 824: | ||
| <panel type=" | <panel type=" | ||
| - | The following two currents with similar frequencies, | + | The following two currents with similar frequencies, | 
| * $i_1(t) = \sqrt{2} \cdot 2 ~A \cdot \cos (\omega t + 20°)$ | * $i_1(t) = \sqrt{2} \cdot 2 ~A \cdot \cos (\omega t + 20°)$ | ||
| * $i_2(t) = \sqrt{2} \cdot 5 ~A \cdot \cos (\omega t + 110°)$ | * $i_2(t) = \sqrt{2} \cdot 5 ~A \cdot \cos (\omega t + 110°)$ | ||
| Zeile 825: | Zeile 832: | ||
| <panel type=" | <panel type=" | ||
| Two complex impedances $\underline{Z}_1$ and $\underline{Z}_2$ are investigated.  | Two complex impedances $\underline{Z}_1$ and $\underline{Z}_2$ are investigated.  | ||
| - | The resulting impedance for a series circuit is $60~\Omega$. | + | The resulting impedance for a series circuit is    | 
| - | The resulting impedance for a parallel circuit is $25~\Omega$. | + | The resulting impedance for a parallel circuit is $25~\Omega + \rm j \cdot 0 ~\Omega $. | 
| What are the values for $\underline{Z}_1$ and $\underline{Z}_2$? | What are the values for $\underline{Z}_1$ and $\underline{Z}_2$? | ||
| + | |||
| + | # | ||
| + | It's a good start to write down all definitions of the given values: | ||
| + | * the given values for the series circuit ($\square_\rm s$) and the parallel circuit ($\square_\rm p$) are: \begin{align*} R_\rm s = 60 ~\Omega , \quad X_\rm s = 0 ~\Omega \\ R_\rm p = 25 ~\Omega , \quad X_\rm p = 0 ~\Omega \\ \end{align*} | ||
| + |   * the series circuit and the parallel circuit results into: \begin{align*}  | ||
| + | * the unknown values of the two impedances are: \begin{align*} \underline{Z}_1 = R_1 + {\rm j}\cdot X_1 \tag{3} \\ \underline{Z}_2 = R_2 + {\rm j}\cdot X_2 \tag{4} \\ \end{align*} | ||
| + | |||
| + | Based on $(1)$,$(3)$ and $(4)$:  | ||
| + | \begin{align*} | ||
| + | R_\rm s         & | ||
| + | &= R_1 + {\rm j}\cdot X_1 &&+ R_2 + {\rm j}\cdot X_2 \\ | ||
| + | \rightarrow 0   & | ||
| + | \end{align*} | ||
| + | Real value and imaginary value must be zero: | ||
| + | \begin{align*} | ||
| + | R_1 &= R_{\rm s} - R_2 \tag{5} \\ | ||
| + | X_1 &= - X_2 \tag{6} | ||
| + | \end{align*} | ||
| + | |||
| + | Based on $(2)$ with $R_\rm s = \underline{Z}_1 + \underline{Z}_2$  | ||
| + | \begin{align*} | ||
| + | R_{\rm p} &= {{\underline{Z}_1 \cdot \underline{Z}_2}\over{\underline{Z}_1 + \underline{Z}_2}} \\ | ||
| + |                            & | ||
| + | R_{\rm p} \cdot R_{\rm s}  & | ||
| + |                            & | ||
| + |                            & | ||
| + | \end{align*} | ||
| + | |||
| + | Substituting $R_1$ and $X_1$ based on $(5)$ and $(6)$: | ||
| + | \begin{align*} | ||
| + | R_{\rm p} \cdot R_{\rm s}  & | ||
| + | \rightarrow 0 & | ||
| + | \end{align*} | ||
| + | |||
| + | Again real value and imaginary value must be zero: | ||
| + | \begin{align*} | ||
| + | 0 & | ||
| + |   & | ||
| + | \rightarrow  | ||
| + | |||
| + | 0 &= R_{\rm s} R_2 - R_2^2 + X_2^2 - R_{\rm p} \cdot R_{\rm s} \\ | ||
| + | &= R_{\rm s} ({{1}\over{2}} R_{\rm s}) - ({{1}\over{2}} R_{\rm s})^2 - X_2^2 - R_{\rm p} \cdot R_{\rm s} \\ | ||
| + | &= {{1}\over{4}} R_{\rm s}^2 + X_2^2 - R_{\rm p} \cdot R_{\rm s} \\ | ||
| + | \rightarrow  | ||
| + | |||
| + | \end{align*} | ||
| + | |||
| + | The concluding result is: | ||
| + | \begin{align*} | ||
| + | (5)+(7): \quad R_1 &= {{1}\over{2}} R_{\rm s} \\ | ||
| + | (7): \quad R_2 &= {{1}\over{2}} R_{\rm s} \\ | ||
| + | (6)+(8)  | ||
| + | (8): \quad X_2 &= \pm \sqrt{R_{\rm p} \cdot R_{\rm s} - {{1}\over{4}} R_{\rm s}^2 } | ||
| + | \end{align*} | ||
| + | |||
| + | # | ||
| + | |||
| + | # | ||
| + | \begin{align*} | ||
| + | R_1 &= 30~\Omega \\ | ||
| + | R_2 &= 30~\Omega \\ | ||
| + | X_1 &= \mp \sqrt{600}~\Omega \approx \mp 24.5~\Omega \\ | ||
| + | X_2 &= \pm \sqrt{600}~\Omega \approx \pm 24.5~\Omega \\ | ||
| + | \end{align*} | ||
| + | # | ||
| + | |||
| </ | </ | ||