Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
| Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
| ee2:task_rdz03rspbwusy7wk_with_calculation [2024/07/03 08:50] – angelegt mexleadmin | ee2:task_rdz03rspbwusy7wk_with_calculation [2024/07/03 10:26] (aktuell) – mexleadmin | ||
|---|---|---|---|
| Zeile 1: | Zeile 1: | ||
| - | {{tag> | + | {{tag> |
| # | # | ||
| <fs medium> | <fs medium> | ||
| - | A coil with a number of turns $n = 300$ and a cross-sectional area $A = 600 ~\rm cm^2$ is located in a homogeneous magnetic field. \\ | + | A coil with $n = 300$ turns and a cross-sectional area $A = 600 ~\rm cm^2$ is located in a homogeneous magnetic field. \\ |
| The rotation of the coil causes a sinusoidal change in the magnetic field in the coil with the frequency $f = 80~\rm Hz$. \\ | The rotation of the coil causes a sinusoidal change in the magnetic field in the coil with the frequency $f = 80~\rm Hz$. \\ | ||
| - | The maximum value of the magnetic flux density in the coil is $\hat{B} = 2 ⋅ 10-6 ~\rm {{Vs}\over{cm^2}}$. | + | The maximum value of the magnetic flux density in the coil is $\hat{B} = 2 \cdot |
| {{drawio> | {{drawio> | ||
| Zeile 14: | Zeile 14: | ||
| # | # | ||
| - | The induced voltage is given by: | + | The induced voltage |
| \begin{align*} | \begin{align*} | ||
| - | U_{\rm ind} &= - {{{\rm d}\Psi}\over{{\rm d}t}} \\ | + | u_{\rm ind} &= - {{{\rm d}\Psi(t)}\over{{\rm d}t}} \\ |
| - | &= - n{{{\rm d}\Phi}\over{{\rm d}t}} \\ | + | &= - n{{{\rm d}\Phi(t)}\over{{\rm d}t}} \\ |
| + | \end{align*} | ||
| + | |||
| + | With $\Phi(t)= B(t) \cdot A$, where $A$ is the constant area of a single winding and $B(t)$ is the changing field through this winding. \\ | ||
| + | Due to the rotation, the field changes as: | ||
| + | |||
| + | \begin{align*} | ||
| + | B(t) &= \hat{B} \cdot \sin(\omega t + \varphi) \\ | ||
| + | & | ||
| + | \end{align*} | ||
| + | |||
| + | This leads to: | ||
| + | \begin{align*} | ||
| + | u_{\rm ind} &= - n{{{\rm d}}\over{{\rm d}t}}A \hat{B} \cdot \sin(2\pi f \cdot t + \varphi) \\ | ||
| + | &= - n \cdot A \hat{B} \cdot 2\pi f \cdot \cos(2\pi \cdot f t + \varphi) \\ | ||
| + | \end{align*} | ||
| + | |||
| + | The absolute value of the factor in front of the $\cos$ is the maximum induced voltage $\hat{U}_{\rm ind}$: | ||
| + | \begin{align*} | ||
| + | \hat{U}_{\rm ind} &= n \cdot A \hat{B} \cdot 2\pi f \\ | ||
| + | &= 300 \cdot 0.06{~\rm m^2} \cdot 2 \cdot 10^{-2} ~\rm {{Vs}\over{m^2}} \cdot 2\pi \cdot 80 {{1}\over{\rm s}} \\ | ||
| + | &= 180.95... {~\rm m^2} \cdot {{\rm Vs}\over{\rm m^2}} \cdot {{1}\over{\rm s}} \\ | ||
| + | &= 180.95... {~\rm V} | ||
| \end{align*} | \end{align*} | ||
| Zeile 25: | Zeile 47: | ||
| # | # | ||
| - | {{drawio> | + | \begin{align*} |
| - | # | + | u_{\rm ind} = - 181 {~\rm V} \cdot \cos(503 {{1}\over{\rm s}} \cdot t ) \\ |
| + | \end{align*}# | ||
| # | # | ||