Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
| ee2:task_abh4vhlgczdbni37_with_calculation [2024/07/04 02:07] – angelegt mexleadmin | ee2:task_abh4vhlgczdbni37_with_calculation [2024/07/04 02:36] (aktuell) – angelegt mexleadmin | ||
|---|---|---|---|
| Zeile 11: | Zeile 11: | ||
| # | # | ||
| - | The complex impedance | + | * The amplitude values |
| - | \begin{align*} | + | |
| - | \underline{Z} | + | # |
| - | & | + | |
| - | \end{align*} | + | |
| - | The Pythagorean theorem can derive the absolute value: | + | # |
| - | \begin{align*} | + | Amplitude values: |
| - | |\underline{Z}|&= \sqrt{ (2\pi \cdot f \cdot L_{\rm M})^2 + R_{\rm M}^2 }\\ | + | * $\hat{U} = 50{~\rm V}$ |
| - | \end{align*} | + | * $\hat{I} = 30{~\rm A}$ |
| - | # | + | RMS values: |
| + | * $U = 35.4{~\rm V}$ | ||
| + | * $I = 21.2{~\rm A}$ | ||
| - | # | ||
| - | \begin{align*} | ||
| - | Z = \sqrt{ (2\pi \cdot f \cdot L_{\rm M})^2 + R_{\rm M}^2 } | ||
| - | \end{align*} | ||
| # | # | ||
| Zeile 33: | Zeile 29: | ||
| # | # | ||
| - | The complex impedance $\underline{Z}$ for a resistive-inductive load (=$R$-$L$ series circuit) is given as | + | The frequency can be derived by the term in the sine function: |
| \begin{align*} | \begin{align*} | ||
| - | \underline{Z} | + | \omega & |
| - | | + | 2\pi \cdot f &= 6000 {{1}\over{\rm s}} \\ |
| + | f &= {{6000}\over{2\pi}} {{1}\over{\rm s}} \\ | ||
| + | f &= 954.93... ~\rm Hz \\ | ||
| \end{align*} | \end{align*} | ||
| - | The Pythagorean theorem can derive | + | For the phase $\varphi$, we have to subtract $\varphi_i $ from $\varphi_u$. \\ |
| + | But to get these values, both the $u(t)$ and $i(t)$ need to have the same sinusoidal function! | ||
| + | Therefore: | ||
| + | * $\varphi_i = 5$ | ||
| + | * $\varphi_u = 4 + {{\pi}\over{2}}$ | ||
| + | |||
| + | By this we get for $\varphi$ | ||
| \begin{align*} | \begin{align*} | ||
| - | |\underline{Z}|&= \sqrt{ (2\pi \cdot f \cdot L_{\rm M})^2 + R_{\rm M}^2 }\\ | + | \varphi |
| + | & | ||
| + | &= 2.14159... | ||
| \end{align*} | \end{align*} | ||
| + | Converted in degree: | ||
| + | \begin{align*} | ||
| + | \varphi & | ||
| + | &= 32.7042...° | ||
| + | \end{align*} | ||
| # | # | ||
| # | # | ||
| - | \begin{align*} | + | |
| - | Z = \sqrt{ (2\pi \cdot f \cdot L_{\rm M})^2 + R_{\rm M}^2 } | + | * $\varphi = +32.7°$ |
| - | \end{align*} | + | |
| # | # | ||
| c) Is the measured element resistive-capacitive or resistive-inductive? | c) Is the measured element resistive-capacitive or resistive-inductive? | ||
| - | |||
| - | # | ||
| - | The complex impedance $\underline{Z}$ for a resistive-inductive load (=$R$-$L$ series circuit) is given as | ||
| - | \begin{align*} | ||
| - | \underline{Z} | ||
| - | & | ||
| - | \end{align*} | ||
| - | |||
| - | The Pythagorean theorem can derive the absolute value: | ||
| - | \begin{align*} | ||
| - | |\underline{Z}|& | ||
| - | \end{align*} | ||
| - | |||
| - | # | ||
| # | # | ||
| - | \begin{align*} | + | The phase shift is positive - therefore, the element is resistive-inductive. |
| - | Z = \sqrt{ (2\pi \cdot f \cdot L_{\rm M})^2 + R_{\rm M}^2 } | + | |
| - | \end{align*} | + | |
| # | # | ||
| # | # | ||