Dies ist eine alte Version des Dokuments!
	
		 $\;$  
$\;$  | $U_A = f(U_E)$   | 
	
	
		 $\;$  
$\;$  |  with III. | 
	
	
		|   | $\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$ | 
	
 
 
	
		| $U_A=\color{blue}{-U_D}-U_C$   | 
	
	
		| with II.  and I.:$ \color{blue}{U_D} = { 1 \over A_D } \cdot U_A \overset{A_D -> \infty}\longrightarrow 0$ | 
	
	
		| $\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$ | 
	
 
 
	
		| $U_A= \quad  0 \quad -\color{blue}{U_C}$ | 
	
	
		| with V.: $\color{blue}{U_C}={ 1 \over C }\cdot(\int_{t_0}^{t_1} I_C \ dt+ Q_0(t_0))$ | 
	
	
		| $\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$ | 
	
 
 
	
		| $U_A = {-{ 1 \over C }\cdot}(\int_{t_0}^{t_1} \color{blue}{I_C} \ dt+ Q_0(t_0)) $ | 
	
	
		| with IV.: $\color{blue}{I_C}=I_R$ | 
	
	
		| $\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$ | 
	
 
 
	
		| $U_A = \color{blue}{-{ 1 \over C }\cdot(}\int_{t_0}^{t_1} I_R \ dt+ Q_0(t_0)\color{blue}{)} $ | 
	
	
		| Factor out | 
	
	
		| $\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$ | 
	
 
 
	
		| $U_A = -{ 1 \over C }\cdot\int_{t_0}^{t_1} I_R \ dt - \color{blue}{ Q_0(t_0) \over C } $ | 
	
	
		| consider the integration constant: $\color{blue}{ Q_0(t_0) \over C }= U_C(t_0) = -U_{A0}$ | 
	
	
		| $\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$ | 
	
 
 
	
		| $U_A = -{ 1 \over C }\cdot\int_{t_0}^{t_1} \color{blue}{I_R} \ dt + U_{A0}$ | 
	
	
		| with VI. and II.: $\color{blue}{I_R}={ U_R \over R}={ U_E \over R} $ | 
	
	
		| $\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$ | 
	
 
 
	
		| $U_A = -{ 1 \over C }\cdot\int_{t_0}^{t_1} \color{blue}{1 \over R} \cdot U_E \ dt + U_{A0}$ | 
	
	
		| move constant ahead | 
	
	
		| $\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$ | 
	
 
 
	
		| $U_A = -{ 1 \over {R\cdot C} }\cdot\int_{t_0}^{t_1} U_E \ dt + U_{A0}$ | 
	
	
		|  insert time constant  $\tau = R \cdot C$  | 
	
	
		| $\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$ | 
	
 
 
	
		| $U_A = -{ 1 \over {\tau} }\cdot\int_{t_0}^{t_1} U_E \ dt + U_{A0}$ |   |   | 
	
	
		| $\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$ |  |  |