Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
task_underseacable [2023/04/11 07:56] – angelegt mexleadmin | task_underseacable [2023/04/11 23:02] (aktuell) – mexleadmin | ||
---|---|---|---|
Zeile 1: | Zeile 1: | ||
- | Sure, here's the answer with the values and formulas in LaTeX notation: | + | Undersea cable capacity. |
+ | |||
+ | You are working as an electrical engineer for a company that is planning to lay a power cable between two coastal cities that are $400 ~\rm km$ apart. The company wants to know what the maximum capacity of the cable should be to meet their power requirements. You have been tasked with calculating the cable' | ||
+ | |||
+ | Assume that the cable' | ||
+ | |||
+ | Calculate the maximum capacity of the cable in $\rm MW$, assuming that the cable is operating at its maximum capacity. | ||
+ | |||
+ | Provide your answer with a brief explanation of your calculations. | ||
+ | |||
+ | Note: You may assume that the cable is a single-phase AC cable. | ||
+ | |||
+ | # | ||
Given: | Given: | ||
Zeile 13: | Zeile 25: | ||
\begin{align*} | \begin{align*} | ||
- | R_{\rm total} &= R \times L \ | + | R_{\rm total} &= R \times L \\ |
- | &= 0.1~{\rm \Omega/km} \times 400~{\rm km} \ | + | &= 0.1~{\rm \Omega/km} \times 400~{\rm km} \\ |
&= 40~{\rm \Omega} | &= 40~{\rm \Omega} | ||
\end{align*} | \end{align*} | ||
Zeile 21: | Zeile 33: | ||
\begin{align*} | \begin{align*} | ||
- | I &= \frac{V_s}{R_{\rm total}} \ | + | I &= \frac{V_s}{R_{\rm total}} |
- | &= \frac{500~{\rm kV}}{40.01~{\rm \Omega}} \ | + | &= \frac{500~{\rm kV}}{40~{\rm \Omega}} |
&= 12.5 ~{\rm kA} | &= 12.5 ~{\rm kA} | ||
\end{align*} | \end{align*} | ||
Zeile 29: | Zeile 41: | ||
\begin{align*} | \begin{align*} | ||
- | P &= V_s \times I \times \cos \phi \ | + | P &= V_s \times I \times \cos \phi \\ |
- | &= 500~{\rm kV} \times 12.5~{\rm kA} \times 0.8 \ | + | &= 500~{\rm kV} \times 12.5~{\rm kA} \times 0.8 \\ |
&= 5,000~{\rm MW} | &= 5,000~{\rm MW} | ||
\end{align*} | \end{align*} | ||
Zeile 37: | Zeile 49: | ||
\begin{align*} | \begin{align*} | ||
- | Q &= V_s \times I \times \sqrt{1 - \cos^2 \phi} \ | + | Q &= V_s \times I \times \sqrt{1 - \cos^2 \phi} \\ |
- | &= 500~{\rm kV} \times 12.5~{\rm kA} \times \sqrt{1 - 0.8^2} \ | + | &= 500~{\rm kV} \times 12.5~{\rm kA} \times \sqrt{1 - 0.8^2} |
&= 2,500~{\rm MVAr} | &= 2,500~{\rm MVAr} | ||
\end{align*} | \end{align*} | ||
Zeile 45: | Zeile 57: | ||
\begin{align*} | \begin{align*} | ||
- | S &= \sqrt{P^2 + Q^2} \ | + | S &= \sqrt{P^2 + Q^2} \\ |
- | &= \sqrt{(5, | + | &= \sqrt{(5, |
&= 5, | &= 5, | ||
\end{align*} | \end{align*} | ||
Therefore, the maximum capacity of the cable is $S = 5, | Therefore, the maximum capacity of the cable is $S = 5, | ||
+ | # | ||
+ |