Dies ist eine alte Version des Dokuments!
example for a simplification with the rule for boolean algebra
\begin{align*} \begin{array}{ll} \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
example for a simplification with the rule for boolean algebra
\begin{align*} \begin{array}{ll} \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
example for a simplification with the rule for boolean algebra
\begin{align*} \begin{array}{ll} \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
example for a simplification with the rule for boolean algebra
\begin{align*} \begin{array}{ll} \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
example for a simplification with the rule for boolean algebra
\begin{align*} \begin{array}{ll} \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
example for a simplification with the rule for boolean algebra
\begin{align*} \begin{array}{ll} \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
example for a simplification with the rule for boolean algebra
\begin{align*} \begin{array}{ll} \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
example for a simplification with the rule for boolean algebra
\begin{align*} \begin{array}{ll} \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
example for a simplification with the rule for boolean algebra
\begin{align*} \begin{array}{ll} \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
example for a simplification with the rule for boolean algebra
\begin{align*} \begin{array}{ll} \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
example for a simplification with the rule for boolean algebra
\begin{align*} \begin{array}{ll} \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
example for a simplification with the rule for boolean algebra
\begin{align*} \begin{array}{ll} \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
example for a simplification with the rule for boolean algebra
\begin{align*} \begin{array}{ll} \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
example for a simplification with the rule for boolean algebra
\begin{align*} \begin{array}{ll} \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
example for a simplification with the rule for boolean algebra
\begin{align*} \begin{array}{ll} \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
example for a simplification with the rule for boolean algebra
\begin{align*} \begin{array}{ll} \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
At first we will switch the representation to the following:
\begin{align*} \begin{array}{ll} \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \color{white}{\overline{ab}} \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
At first we will switch the representation to the following:
\begin{align*} \begin{array}{ll} /(a + (b \cdot (/a + c) \cdot 1 ) + a ) & \color{white}{\overline{ab}} \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
1. $\color{blue}{\text{Neutral Element}}$
\begin{align*} \begin{array}{ll} /(a + (b \cdot (/a + c) \color{blue}{\cdot 1} ) + a ) & \color{white}{\overline{ab}} \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
1. $\color{blue}{\text{Neutral Element}}$
\begin{align*} \begin{array}{ll} /(a + (b \cdot (/a + c) \quad \; ) + a ) & \color{white}{\overline{ab}} \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
2. $\color{blue}{\text{Commutative Law}}$
\begin{align*} \begin{array}{ll} /(a + \color{blue}{(b \cdot (/a + c) \quad \; ) + a }) & \color{white}{\overline{ab}} \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
2. $\color{blue}{\text{Commutative Law}}$
\begin{align*} \begin{array}{ll} /(a + a + (b \cdot (/a + c) \quad \; )) & \color{white}{\overline{ab}} \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
3. $\color{blue}{\text{Idempotence}}$
\begin{align*} \begin{array}{ll} /(\color{blue}{a + a} + (b \cdot (/a + c)\quad \;)) & \color{white}{\overline{ab}} \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
3. $\color{blue}{\text{Idempotence}}$
\begin{align*} \begin{array}{ll} /(a \quad \enspace \: + (b \cdot (/a + c)\quad \;)) & \color{white}{\overline{ab}} \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
4. $\color{blue}{\text{Distributive Law}}$
\begin{align*} \begin{array}{ll} /(a \quad \enspace \: + (\color{blue}{b \cdot (/a + c)} \quad \;)) & \color{white}{\overline{ab}} \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
4. $\color{blue}{\text{Distributive Law}}$
\begin{align*} \begin{array}{ll} /(a \quad \, + ((b \cdot /a) + (b \cdot c))) & \color{white}{\overline{ab}} \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
5. $\color{blue}{\text{Associative Law}}$
\begin{align*} \begin{array}{ll} /(\color{blue}{a \quad \, + ((b \cdot /a) + (b \cdot c))}) & \color{white}{\overline{ab}} \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
5. $\color{blue}{\text{Associative Law}}$
\begin{align*} \begin{array}{ll} /(a \quad \, + (b \cdot /a) + \: (b \cdot c)\: ) & \color{white}{\overline{ab}} \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
6. $\color{blue}{\text{Absorption Law}}$
\begin{align*} \begin{array}{ll} /((\color{blue}{a \enspace \: + (b \cdot /a)}) + \, (b \cdot c) \, ) & \color{white}{\overline{ab}} \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
6. $\color{blue}{\text{Absorption Law}}$
\begin{align*} \begin{array}{ll} /(a \enspace \: + \, b \quad + \, (b \cdot c) \,) & \color{white}{\overline{ab}} \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
7. $\color{blue}{\text{Absorption Law}}$
\begin{align*} \begin{array}{ll} /(a \enspace \: + \, \color{blue}{b \quad + \, (b \cdot c) \,) & \color{white}{\overline{ab}} \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}