Dies ist eine alte Version des Dokuments!
example for a simplification with the rule for boolean algebra
\begin{align*} \begin{array}{ll} \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
example for a simplification with the rule for boolean algebra
\begin{align*} \begin{array}{ll} \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
example for a simplification with the rule for boolean algebra
\begin{align*} \begin{array}{ll} \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
example for a simplification with the rule for boolean algebra
\begin{align*} \begin{array}{ll} \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
example for a simplification with the rule for boolean algebra
\begin{align*} \begin{array}{ll} \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
example for a simplification with the rule for boolean algebra
\begin{align*} \begin{array}{ll} \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
example for a simplification with the rule for boolean algebra
\begin{align*} \begin{array}{ll} \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
example for a simplification with the rule for boolean algebra
\begin{align*} \begin{array}{ll} \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
example for a simplification with the rule for boolean algebra
\begin{align*} \begin{array}{ll} \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
example for a simplification with the rule for boolean algebra
\begin{align*} \begin{array}{ll} \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
example for a simplification with the rule for boolean algebra
\begin{align*} \begin{array}{ll} \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
example for a simplification with the rule for boolean algebra
\begin{align*} \begin{array}{ll} \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
example for a simplification with the rule for boolean algebra
\begin{align*} \begin{array}{ll} \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
example for a simplification with the rule for boolean algebra
\begin{align*} \begin{array}{ll} \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
example for a simplification with the rule for boolean algebra
\begin{align*} \begin{array}{ll} \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
example for a simplification with the rule for boolean algebra
\begin{align*} \begin{array}{ll} \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
At first we will switch the representation to the following:
\begin{align*} \begin{array}{ll} \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \color{white}{\overline{ab}} \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
At first we will switch the representation to the following:
\begin{align*} \begin{array}{ll} /(a + (b \cdot (/a + c) \cdot 1 ) + a ) & \color{white}{\overline{ab}} \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
1. $\color{blue}{\text{Neutral Element}}$
\begin{align*} \begin{array}{ll} /(a + (b \cdot (/a + c) \color{blue}{\cdot 1} ) + a ) & \color{white}{\overline{ab}} \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
1. $\color{blue}{\text{Neutral Element}}$
\begin{align*} \begin{array}{ll} /(a + (b \cdot (/a + c) \quad \; ) + a ) & \color{white}{\overline{ab}} \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
2. $\color{blue}{\text{Commutative Law}}$
\begin{align*} \begin{array}{ll} /(a + \color{blue}{(b \cdot (/a + c) \quad \; ) + a }) & \color{white}{\overline{ab}} \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
2. $\color{blue}{\text{Commutative Law}}$
\begin{align*} \begin{array}{ll} /(a + a + (b \cdot (/a + c) \quad \; )) & \color{white}{\overline{ab}} \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
3. $\color{blue}{\text{Idempotence}}$
\begin{align*} \begin{array}{ll} /(\color{blue}{a + a} + (b \cdot (/a + c))) & \color{white}{\overline{ab}} \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
3. $\color{blue}{\text{Idempotence}}$
\begin{align*} \begin{array}{ll} /(a \quad + (b \cdot (/a + c))) & \color{white}{\overline{ab}} \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
4. $\color{blue}{\text{Distributive Law}}$
\begin{align*} \begin{array}{ll} /(a \quad + (\color{blue}{b \cdot (/a + c)})) & \color{white}{\overline{ab}} \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}
4. $\color{blue}{\text{Distributive Law}}$
\begin{align*} \begin{array}{ll} /(a \quad + ((b \cdot /a) + (b \cdot c)))) & \color{white}{\overline{ab}} \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}