Dies ist eine alte Version des Dokuments!


example for a simplification with the rule for boolean algebra

\begin{align*} \begin{array}{ll} \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \color{white}{____________________________________________ \\ ____________________________________________ \\ ____________________________________________ \\ ____________________________________________ \\ ____________________________________________ \\ ____________________________________________ \\ ____________________________________________ \\ ____________________________________________ \\ ____________________________________________ \\ ____________________________________________ \\ ____________________________________________ \\ ____________________________________________ \\ } \end{array} \end{align*}

At first we will switch the representation to the following:

\begin{align*} \begin{array}{ll} \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \color{white}{\overline{ab}} \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}

At first we will switch the representation to the following:

\begin{align*} \begin{array}{ll} /(a + (b \cdot (/a + c) \cdot 1 ) + a ) & \color{white}{\overline{ab}} \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}

1. $\color{blue}{\text{Neutral Element}}$


\begin{align*} \begin{array}{ll} /(a + (b \cdot (/a + c) \color{blue}{\cdot 1} ) + a ) & \color{white}{\overline{ab}} \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}

1. $\color{blue}{\text{Neutral Element}}$


\begin{align*} \begin{array}{ll} /(a + (b \cdot (/a + c) \quad ) + a ) & \color{white}{\overline{ab}} \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}

2. $\color{blue}{\text{Commutative Law}}$


\begin{align*} \begin{array}{ll} /(a + \color{blue}{(b \cdot (/a + c) \quad ) + a }) & \color{white}{\overline{ab}} \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}

2. $\color{blue}{\text{Commutative Law}}$


\begin{align*} \begin{array}{ll} /(a + a + (b \cdot (/a + c))) & \color{white}{\overline{ab}} \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}

3. $\color{blue}{\text{Idempotence}}$


\begin{align*} \begin{array}{ll} /(\color{blue}{a + a} + (b \cdot (/a + c))) & \color{white}{\overline{ab}} \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}

3. $\color{blue}{\text{Idempotence}}$


\begin{align*} \begin{array}{ll} /(a \quad + (b \cdot (/a + c))) & \color{white}{\overline{ab}} \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}

4. $\color{blue}{\text{Distributive Law}}$


\begin{align*} \begin{array}{ll} /(a \quad + (\color{blue}{b \cdot (/a + c)})) & \color{white}{\overline{ab}} \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}

4. $\color{blue}{\text{Distributive Law}}$


\begin{align*} \begin{array}{ll} /(a \quad + ((b \cdot /a) + (b \cdot c)))) & \color{white}{\overline{ab}} \\ \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad \\ \end{array} \end{align*}