Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
Beide Seiten der vorigen Revision Vorhergehende Überarbeitung Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
introduction_to_digital_systems:calc_logic_example [2021/09/17 00:01] – tfischer | introduction_to_digital_systems:calc_logic_example [2021/09/17 00:08] (aktuell) – tfischer | ||
---|---|---|---|
Zeile 1: | Zeile 1: | ||
~~REVEAL ~~ | ~~REVEAL ~~ | ||
- | |||
- | |||
- | ---->> | ||
- | example for a simplification with the rule for boolean algebra \\ \\ | ||
- | |||
- | \begin{align*} | ||
- | \begin{array}{ll} | ||
- | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ | ||
- | \quad\quad\quad\quad\quad\quad | ||
- | \end{array} | ||
- | \end{align*} | ||
- | |||
- | << | ||
- | |||
- | ---->> | ||
- | example for a simplification with the rule for boolean algebra \\ \\ | ||
- | |||
- | \begin{align*} | ||
- | \begin{array}{ll} | ||
- | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ | ||
- | \quad\quad\quad\quad\quad\quad | ||
- | \end{array} | ||
- | \end{align*} | ||
- | |||
- | << | ||
- | |||
- | ---->> | ||
- | example for a simplification with the rule for boolean algebra \\ \\ | ||
- | |||
- | \begin{align*} | ||
- | \begin{array}{ll} | ||
- | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ | ||
- | \quad\quad\quad\quad\quad\quad | ||
- | \end{array} | ||
- | \end{align*} | ||
- | |||
- | << | ||
- | |||
- | ---->> | ||
- | example for a simplification with the rule for boolean algebra \\ \\ | ||
- | |||
- | \begin{align*} | ||
- | \begin{array}{ll} | ||
- | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ | ||
- | \quad\quad\quad\quad\quad\quad | ||
- | \end{array} | ||
- | \end{align*} | ||
- | |||
- | << | ||
- | |||
- | ---->> | ||
- | example for a simplification with the rule for boolean algebra \\ \\ | ||
- | |||
- | \begin{align*} | ||
- | \begin{array}{ll} | ||
- | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ | ||
- | \quad\quad\quad\quad\quad\quad | ||
- | \end{array} | ||
- | \end{align*} | ||
- | |||
- | << | ||
- | |||
- | ---->> | ||
- | example for a simplification with the rule for boolean algebra \\ \\ | ||
- | |||
- | \begin{align*} | ||
- | \begin{array}{ll} | ||
- | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ | ||
- | \quad\quad\quad\quad\quad\quad | ||
- | \end{array} | ||
- | \end{align*} | ||
- | |||
- | << | ||
- | |||
- | ---->> | ||
- | example for a simplification with the rule for boolean algebra \\ \\ | ||
- | |||
- | \begin{align*} | ||
- | \begin{array}{ll} | ||
- | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ | ||
- | \quad\quad\quad\quad\quad\quad | ||
- | \end{array} | ||
- | \end{align*} | ||
- | |||
- | << | ||
- | |||
- | ---->> | ||
- | example for a simplification with the rule for boolean algebra \\ \\ | ||
- | |||
- | \begin{align*} | ||
- | \begin{array}{ll} | ||
- | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ | ||
- | \quad\quad\quad\quad\quad\quad | ||
- | \end{array} | ||
- | \end{align*} | ||
- | |||
- | << | ||
- | |||
- | ---->> | ||
- | example for a simplification with the rule for boolean algebra \\ \\ | ||
- | |||
- | \begin{align*} | ||
- | \begin{array}{ll} | ||
- | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ | ||
- | \quad\quad\quad\quad\quad\quad | ||
- | \end{array} | ||
- | \end{align*} | ||
- | |||
- | << | ||
- | |||
- | ---->> | ||
- | example for a simplification with the rule for boolean algebra \\ \\ | ||
- | |||
- | \begin{align*} | ||
- | \begin{array}{ll} | ||
- | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ | ||
- | \quad\quad\quad\quad\quad\quad | ||
- | \end{array} | ||
- | \end{align*} | ||
- | |||
- | << | ||
- | |||
- | ---->> | ||
- | example for a simplification with the rule for boolean algebra \\ \\ | ||
- | |||
- | \begin{align*} | ||
- | \begin{array}{ll} | ||
- | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ | ||
- | \quad\quad\quad\quad\quad\quad | ||
- | \end{array} | ||
- | \end{align*} | ||
- | |||
- | << | ||
- | |||
- | ---->> | ||
- | example for a simplification with the rule for boolean algebra \\ \\ | ||
- | |||
- | \begin{align*} | ||
- | \begin{array}{ll} | ||
- | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ | ||
- | \quad\quad\quad\quad\quad\quad | ||
- | \end{array} | ||
- | \end{align*} | ||
- | |||
- | << | ||
- | |||
- | ---->> | ||
- | example for a simplification with the rule for boolean algebra \\ \\ | ||
- | |||
- | \begin{align*} | ||
- | \begin{array}{ll} | ||
- | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ | ||
- | \quad\quad\quad\quad\quad\quad | ||
- | \end{array} | ||
- | \end{align*} | ||
- | |||
- | << | ||
- | |||
- | ---->> | ||
- | example for a simplification with the rule for boolean algebra \\ \\ | ||
- | |||
- | \begin{align*} | ||
- | \begin{array}{ll} | ||
- | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ | ||
- | \quad\quad\quad\quad\quad\quad | ||
- | \end{array} | ||
- | \end{align*} | ||
- | |||
- | << | ||
- | |||
- | ---->> | ||
- | example for a simplification with the rule for boolean algebra \\ \\ | ||
- | |||
- | \begin{align*} | ||
- | \begin{array}{ll} | ||
- | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ | ||
- | \quad\quad\quad\quad\quad\quad | ||
- | \end{array} | ||
- | \end{align*} | ||
- | |||
- | << | ||
---->> | ---->> | ||
Zeile 341: | Zeile 160: | ||
\begin{align*} | \begin{align*} | ||
\begin{array}{ll} | \begin{array}{ll} | ||
- | /(a \quad \, + \,\,\,\, b \quad + (b \cdot c) \,\,) & \color{white}{\overline{ab}} | + | /(a \quad \, + \quad\enspace b \quad\,\, + (b \cdot c) \,\,) & \color{white}{\overline{ab}} |
\quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
\end{array} | \end{array} | ||
Zeile 352: | Zeile 171: | ||
\begin{align*} | \begin{align*} | ||
\begin{array}{ll} | \begin{array}{ll} | ||
- | /(a \enspace | + | /(a \quad \, + \quad\enspace |
+ | \quad\quad\quad\quad\quad\quad | ||
+ | \end{array} | ||
+ | \end{align*} | ||
+ | << | ||
+ | |||
+ | ---->> | ||
+ | 7. $\color{blue}{\text{Absorption Law}}$ \\ \\ \\ | ||
+ | |||
+ | \begin{align*} | ||
+ | \begin{array}{ll} | ||
+ | /(a \quad \, + \quad\enspace b ) \qquad\qquad\quad\; | ||
+ | \quad\quad\quad\quad\quad\quad | ||
+ | \end{array} | ||
+ | \end{align*} | ||
+ | << | ||
+ | |||
+ | ---->> | ||
+ | 8. $\color{blue}{\text{DeMorgan}}$ \\ \\ \\ | ||
+ | |||
+ | \begin{align*} | ||
+ | \begin{array}{ll} | ||
+ | \color{blue}{/ | ||
+ | \quad\quad\quad\quad\quad\quad | ||
+ | \end{array} | ||
+ | \end{align*} | ||
+ | << | ||
+ | |||
+ | ---->> | ||
+ | 8. $\color{blue}{\text{DeMorgan}}$ \\ \\ \\ | ||
+ | |||
+ | \begin{align*} | ||
+ | \begin{array}{ll} | ||
+ | \;/a \quad \, \cdot \quad\enspace /b \qquad\qquad\quad\; | ||
\quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
\end{array} | \end{array} | ||
\end{align*} | \end{align*} | ||
<< | << |