Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
Beide Seiten der vorigen Revision Vorhergehende Überarbeitung Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
introduction_to_digital_systems:calc_logic_example [2021/09/16 23:57] – tfischer | introduction_to_digital_systems:calc_logic_example [2021/09/17 00:08] (aktuell) – tfischer | ||
---|---|---|---|
Zeile 1: | Zeile 1: | ||
~~REVEAL ~~ | ~~REVEAL ~~ | ||
- | |||
---->> | ---->> | ||
example for a simplification with the rule for boolean algebra \\ \\ | example for a simplification with the rule for boolean algebra \\ \\ | ||
Zeile 15: | Zeile 14: | ||
---->> | ---->> | ||
- | example for a simplification with the rule for boolean algebra | + | At first we will switch |
\begin{align*} | \begin{align*} | ||
\begin{array}{ll} | \begin{array}{ll} | ||
- | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & | + | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & |
\quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
\end{array} | \end{array} | ||
\end{align*} | \end{align*} | ||
- | |||
<< | << | ||
- | |||
---->> | ---->> | ||
- | example for a simplification with the rule for boolean algebra | + | At first we will switch |
\begin{align*} | \begin{align*} | ||
\begin{array}{ll} | \begin{array}{ll} | ||
- | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & | + | /(a + (b \cdot (/a + c) \cdot 1 ) + a ) & |
\quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
\end{array} | \end{array} | ||
\end{align*} | \end{align*} | ||
- | |||
<< | << | ||
---->> | ---->> | ||
- | example for a simplification with the rule for boolean algebra | + | 1. $\color{blue}{\text{Neutral Element}}$ \\ \\ \\ |
\begin{align*} | \begin{align*} | ||
\begin{array}{ll} | \begin{array}{ll} | ||
- | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & | + | /(a + (b \cdot (/a + c) \color{blue}{\cdot |
\quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
\end{array} | \end{array} | ||
\end{align*} | \end{align*} | ||
- | |||
<< | << | ||
---->> | ---->> | ||
- | example for a simplification with the rule for boolean algebra | + | 1. $\color{blue}{\text{Neutral Element}}$ \\ \\ \\ |
\begin{align*} | \begin{align*} | ||
\begin{array}{ll} | \begin{array}{ll} | ||
- | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & | + | /(a + (b \cdot (/a + c) \quad \; ) + a ) & |
\quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
\end{array} | \end{array} | ||
\end{align*} | \end{align*} | ||
- | |||
<< | << | ||
---->> | ---->> | ||
- | example for a simplification with the rule for boolean algebra | + | 2. $\color{blue}{\text{Commutative Law}}$ \\ \\ \\ |
\begin{align*} | \begin{align*} | ||
\begin{array}{ll} | \begin{array}{ll} | ||
- | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & | + | /(a + \color{blue}{(b \cdot (/a + c) \quad \; ) + a }) & |
\quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
\end{array} | \end{array} | ||
\end{align*} | \end{align*} | ||
- | |||
<< | << | ||
---->> | ---->> | ||
- | example for a simplification with the rule for boolean algebra | + | 2. $\color{blue}{\text{Commutative Law}}$ \\ \\ \\ |
\begin{align*} | \begin{align*} | ||
\begin{array}{ll} | \begin{array}{ll} | ||
- | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & | + | /(a + a + (b \cdot (/a + c) \quad \; )) & |
\quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
\end{array} | \end{array} | ||
\end{align*} | \end{align*} | ||
- | |||
<< | << | ||
---->> | ---->> | ||
- | example for a simplification with the rule for boolean algebra | + | 3. $\color{blue}{\text{Idempotence}}$ \\ \\ \\ |
\begin{align*} | \begin{align*} | ||
\begin{array}{ll} | \begin{array}{ll} | ||
- | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & | + | /(\color{blue}{a + a} + (b \cdot (/a + c)\quad \;)) & |
\quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
\end{array} | \end{array} | ||
\end{align*} | \end{align*} | ||
- | |||
<< | << | ||
---->> | ---->> | ||
- | example for a simplification with the rule for boolean algebra | + | 3. $\color{blue}{\text{Idempotence}}$ \\ \\ \\ |
\begin{align*} | \begin{align*} | ||
\begin{array}{ll} | \begin{array}{ll} | ||
- | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & | + | /(a \quad \enspace \: + (b \cdot (/a + c)\quad \;)) & |
\quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
\end{array} | \end{array} | ||
\end{align*} | \end{align*} | ||
- | |||
<< | << | ||
---->> | ---->> | ||
- | example for a simplification with the rule for boolean algebra | + | 4. $\color{blue}{\text{Distributive Law}}$ \\ \\ \\ |
\begin{align*} | \begin{align*} | ||
\begin{array}{ll} | \begin{array}{ll} | ||
- | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & | + | /(a \quad \enspace |
\quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
\end{array} | \end{array} | ||
\end{align*} | \end{align*} | ||
- | |||
<< | << | ||
---->> | ---->> | ||
- | example for a simplification with the rule for boolean algebra | + | 4. $\color{blue}{\text{Distributive Law}}$ \\ \\ \\ |
\begin{align*} | \begin{align*} | ||
\begin{array}{ll} | \begin{array}{ll} | ||
- | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & | + | /(a \quad \, + ((b \cdot /a) + (b \cdot c))) & |
\quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
\end{array} | \end{array} | ||
\end{align*} | \end{align*} | ||
- | |||
<< | << | ||
---->> | ---->> | ||
- | example for a simplification with the rule for boolean algebra | + | 5. $\color{blue}{\text{Associative Law}}$ \\ \\ \\ |
\begin{align*} | \begin{align*} | ||
\begin{array}{ll} | \begin{array}{ll} | ||
- | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & | + | /(\color{blue}{a \quad \, + ((b \cdot /a) + (b \cdot c))}) & |
\quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
\end{array} | \end{array} | ||
\end{align*} | \end{align*} | ||
- | |||
<< | << | ||
---->> | ---->> | ||
- | example for a simplification with the rule for boolean algebra | + | 5. $\color{blue}{\text{Associative Law}}$ \\ \\ \\ |
\begin{align*} | \begin{align*} | ||
\begin{array}{ll} | \begin{array}{ll} | ||
- | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & | + | /(a \quad \, + \,\,(b \cdot /a) + (b \cdot c)\,\, ) & |
\quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
\end{array} | \end{array} | ||
\end{align*} | \end{align*} | ||
- | |||
<< | << | ||
---->> | ---->> | ||
- | example for a simplification with the rule for boolean algebra | + | 6. $\color{blue}{\text{Absorption Law}}$ \\ \\ \\ |
\begin{align*} | \begin{align*} | ||
\begin{array}{ll} | \begin{array}{ll} | ||
- | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & | + | /(\color{blue}{a \quad \, + \,\,(b \cdot /a)} + (b \cdot c) \,\, ) & |
\quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
\end{array} | \end{array} | ||
\end{align*} | \end{align*} | ||
- | |||
<< | << | ||
---->> | ---->> | ||
- | example for a simplification with the rule for boolean algebra | + | 6. $\color{blue}{\text{Absorption Law}}$ \\ \\ \\ |
\begin{align*} | \begin{align*} | ||
\begin{array}{ll} | \begin{array}{ll} | ||
- | \overline{a \lor (b \land (\bar{a} | + | /(a \quad \, + \quad\enspace |
\quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
\end{array} | \end{array} | ||
\end{align*} | \end{align*} | ||
- | |||
<< | << | ||
---->> | ---->> | ||
- | example for a simplification with the rule for boolean algebra | + | 7. $\color{blue}{\text{Absorption Law}}$ \\ \\ \\ |
\begin{align*} | \begin{align*} | ||
\begin{array}{ll} | \begin{array}{ll} | ||
- | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & | + | /(a \quad \, + \quad\enspace \color{blue}{b \quad\,\, + (b \cdot c)} |
\quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
\end{array} | \end{array} | ||
\end{align*} | \end{align*} | ||
- | |||
<< | << | ||
---->> | ---->> | ||
- | At first we will switch the representation to the following: | + | 7. $\color{blue}{\text{Absorption Law}}$ \\ \\ \\ |
\begin{align*} | \begin{align*} | ||
\begin{array}{ll} | \begin{array}{ll} | ||
- | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \color{white}{\overline{ab}} | + | /(a \quad \, + \quad\enspace b ) \qquad\qquad\quad\; & |
- | \quad\quad\quad\quad\quad\quad & \quad\quad\quad\quad\quad\quad | + | |
- | \end{array} | + | |
- | \end{align*} | + | |
- | << | + | |
- | ---->> | + | |
- | At first we will switch the representation to the following: \\ \\ | + | |
- | + | ||
- | \begin{align*} | + | |
- | \begin{array}{ll} | + | |
- | /(a + (b \cdot (/a + c) \cdot 1 ) + a ) & | + | |
\quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
\end{array} | \end{array} | ||
Zeile 216: | Zeile 189: | ||
---->> | ---->> | ||
- | 1. $\color{blue}{\text{Neutral Element}}$ \\ \\ \\ | + | 8. $\color{blue}{\text{DeMorgan}}$ \\ \\ \\ |
\begin{align*} | \begin{align*} | ||
\begin{array}{ll} | \begin{array}{ll} | ||
- | /(a + (b \cdot (/a + c) \color{blue}{\cdot 1} ) + a ) & \color{white}{\overline{ab}} | + | \color{blue}{/(a \quad \, + \quad\enspace b )} \qquad\qquad\quad\; |
\quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
\end{array} | \end{array} | ||
Zeile 227: | Zeile 200: | ||
---->> | ---->> | ||
- | 1. $\color{blue}{\text{Neutral Element}}$ \\ \\ \\ | + | 8. $\color{blue}{\text{DeMorgan}}$ \\ \\ \\ |
- | + | ||
- | \begin{align*} | + | |
- | \begin{array}{ll} | + | |
- | /(a + (b \cdot (/a + c) \quad \; ) + a ) & \color{white}{\overline{ab}} | + | |
- | \quad\quad\quad\quad\quad\quad | + | |
- | \end{array} | + | |
- | \end{align*} | + | |
- | << | + | |
- | + | ||
- | ---->> | + | |
- | 2. $\color{blue}{\text{Commutative Law}}$ \\ \\ \\ | + | |
- | + | ||
- | \begin{align*} | + | |
- | \begin{array}{ll} | + | |
- | /(a + \color{blue}{(b \cdot (/a + c) \quad \; ) + a }) & \color{white}{\overline{ab}} | + | |
- | \quad\quad\quad\quad\quad\quad | + | |
- | \end{array} | + | |
- | \end{align*} | + | |
- | << | + | |
- | + | ||
- | ---->> | + | |
- | 2. $\color{blue}{\text{Commutative Law}}$ \\ \\ \\ | + | |
- | + | ||
- | \begin{align*} | + | |
- | \begin{array}{ll} | + | |
- | /(a + a + (b \cdot (/a + c) \quad \; )) & \color{white}{\overline{ab}} | + | |
- | \quad\quad\quad\quad\quad\quad | + | |
- | \end{array} | + | |
- | \end{align*} | + | |
- | << | + | |
- | + | ||
- | ---->> | + | |
- | 3. $\color{blue}{\text{Idempotence}}$ \\ \\ \\ | + | |
- | + | ||
- | \begin{align*} | + | |
- | \begin{array}{ll} | + | |
- | / | + | |
- | \quad\quad\quad\quad\quad\quad | + | |
- | \end{array} | + | |
- | \end{align*} | + | |
- | << | + | |
- | + | ||
- | ---->> | + | |
- | 3. $\color{blue}{\text{Idempotence}}$ \\ \\ \\ | + | |
- | + | ||
- | \begin{align*} | + | |
- | \begin{array}{ll} | + | |
- | /(a \quad \enspace \: + (b \cdot (/a + c)\quad \;)) & \color{white}{\overline{ab}} | + | |
- | \quad\quad\quad\quad\quad\quad | + | |
- | \end{array} | + | |
- | \end{align*} | + | |
- | << | + | |
- | + | ||
- | ---->> | + | |
- | 4. $\color{blue}{\text{Distributive Law}}$ \\ \\ \\ | + | |
- | + | ||
- | \begin{align*} | + | |
- | \begin{array}{ll} | + | |
- | /(a \quad \enspace \: + (\color{blue}{b \cdot (/a + c)} \quad \;)) & \color{white}{\overline{ab}} | + | |
- | \quad\quad\quad\quad\quad\quad | + | |
- | \end{array} | + | |
- | \end{align*} | + | |
- | << | + | |
- | + | ||
- | ---->> | + | |
- | 4. $\color{blue}{\text{Distributive Law}}$ \\ \\ \\ | + | |
- | + | ||
- | \begin{align*} | + | |
- | \begin{array}{ll} | + | |
- | /(a \quad \, + ((b \cdot /a) + (b \cdot c))) & \color{white}{\overline{ab}} | + | |
- | \quad\quad\quad\quad\quad\quad | + | |
- | \end{array} | + | |
- | \end{align*} | + | |
- | << | + | |
- | + | ||
- | ---->> | + | |
- | 5. $\color{blue}{\text{Associative Law}}$ \\ \\ \\ | + | |
- | + | ||
- | \begin{align*} | + | |
- | \begin{array}{ll} | + | |
- | / | + | |
- | \quad\quad\quad\quad\quad\quad | + | |
- | \end{array} | + | |
- | \end{align*} | + | |
- | << | + | |
- | + | ||
- | ---->> | + | |
- | 5. $\color{blue}{\text{Associative Law}}$ \\ \\ \\ | + | |
- | + | ||
- | \begin{align*} | + | |
- | \begin{array}{ll} | + | |
- | /(a \quad \, + (b \cdot /a) + \; (b \cdot c)\; ) & \color{white}{\overline{ab}} | + | |
- | \quad\quad\quad\quad\quad\quad | + | |
- | \end{array} | + | |
- | \end{align*} | + | |
- | << | + | |
- | + | ||
- | ---->> | + | |
- | 6. $\color{blue}{\text{Absorption Law}}$ \\ \\ \\ | + | |
- | + | ||
- | \begin{align*} | + | |
- | \begin{array}{ll} | + | |
- | / | + | |
- | \quad\quad\quad\quad\quad\quad | + | |
- | \end{array} | + | |
- | \end{align*} | + | |
- | << | + | |
- | + | ||
- | ---->> | + | |
- | 6. $\color{blue}{\text{Absorption Law}}$ \\ \\ \\ | + | |
- | + | ||
- | \begin{align*} | + | |
- | \begin{array}{ll} | + | |
- | /(a \enspace \: + \, b \quad + \, (b \cdot c) \,) & \color{white}{\overline{ab}} | + | |
- | \quad\quad\quad\quad\quad\quad | + | |
- | \end{array} | + | |
- | \end{align*} | + | |
- | << | + | |
- | + | ||
- | ---->> | + | |
- | 7. $\color{blue}{\text{Absorption Law}}$ \\ \\ \\ | + | |
\begin{align*} | \begin{align*} | ||
\begin{array}{ll} | \begin{array}{ll} | ||
- | /(a \enspace \: + \, \color{blue}{b | + | \;/a \quad \, \cdot \quad\enspace /b \qquad\qquad\quad\; |
\quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
\end{array} | \end{array} | ||
\end{align*} | \end{align*} | ||
<< | << |