Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
Beide Seiten der vorigen Revision Vorhergehende Überarbeitung Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
introduction_to_digital_systems:calc_logic_example [2021/09/16 23:24] – tfischer | introduction_to_digital_systems:calc_logic_example [2021/09/17 00:08] (aktuell) – tfischer | ||
---|---|---|---|
Zeile 1: | Zeile 1: | ||
~~REVEAL ~~ | ~~REVEAL ~~ | ||
- | + | ||
- | ---> | + | ---->> |
example for a simplification with the rule for boolean algebra \\ \\ | example for a simplification with the rule for boolean algebra \\ \\ | ||
Zeile 10: | Zeile 10: | ||
\end{array} | \end{array} | ||
\end{align*} | \end{align*} | ||
- | <--- | ||
- | ---> | + | <<---- |
+ | |||
+ | ---->> | ||
At first we will switch the representation to the following: \\ \\ | At first we will switch the representation to the following: \\ \\ | ||
Zeile 21: | Zeile 22: | ||
\end{array} | \end{array} | ||
\end{align*} | \end{align*} | ||
- | <--- | + | <<---- |
- | ---> | + | ---->> |
At first we will switch the representation to the following: \\ \\ | At first we will switch the representation to the following: \\ \\ | ||
Zeile 31: | Zeile 32: | ||
\end{array} | \end{array} | ||
\end{align*} | \end{align*} | ||
- | <--- | + | <<---- |
- | ---> | + | ---->> |
1. $\color{blue}{\text{Neutral Element}}$ \\ \\ \\ | 1. $\color{blue}{\text{Neutral Element}}$ \\ \\ \\ | ||
Zeile 42: | Zeile 43: | ||
\end{array} | \end{array} | ||
\end{align*} | \end{align*} | ||
- | <--- | + | <<---- |
- | ---> | + | ---->> |
1. $\color{blue}{\text{Neutral Element}}$ \\ \\ \\ | 1. $\color{blue}{\text{Neutral Element}}$ \\ \\ \\ | ||
\begin{align*} | \begin{align*} | ||
\begin{array}{ll} | \begin{array}{ll} | ||
- | /(a + (b \cdot (/a + c) \quad ) + a ) & \color{white}{\overline{ab}} | + | /(a + (b \cdot (/a + c) \quad \; ) + a ) & \color{white}{\overline{ab}} |
\quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
\end{array} | \end{array} | ||
\end{align*} | \end{align*} | ||
- | <--- | + | <<---- |
- | ---> | + | ---->> |
2. $\color{blue}{\text{Commutative Law}}$ \\ \\ \\ | 2. $\color{blue}{\text{Commutative Law}}$ \\ \\ \\ | ||
\begin{align*} | \begin{align*} | ||
\begin{array}{ll} | \begin{array}{ll} | ||
- | /(a + \color{blue}{(b \cdot (/a + c) \quad ) + a }) & \color{white}{\overline{ab}} | + | /(a + \color{blue}{(b \cdot (/a + c) \quad \; ) + a }) & \color{white}{\overline{ab}} |
\quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
\end{array} | \end{array} | ||
\end{align*} | \end{align*} | ||
- | <--- | + | <<---- |
- | ---> | + | ---->> |
2. $\color{blue}{\text{Commutative Law}}$ \\ \\ \\ | 2. $\color{blue}{\text{Commutative Law}}$ \\ \\ \\ | ||
\begin{align*} | \begin{align*} | ||
\begin{array}{ll} | \begin{array}{ll} | ||
- | /(a + a + (b \cdot (/a + c))) & \color{white}{\overline{ab}} | + | /(a + a + (b \cdot (/a + c) \quad \; )) & \color{white}{\overline{ab}} |
\quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
\end{array} | \end{array} | ||
\end{align*} | \end{align*} | ||
- | <--- | + | <<---- |
- | ---> | + | ---->> |
3. $\color{blue}{\text{Idempotence}}$ \\ \\ \\ | 3. $\color{blue}{\text{Idempotence}}$ \\ \\ \\ | ||
\begin{align*} | \begin{align*} | ||
\begin{array}{ll} | \begin{array}{ll} | ||
- | / | + | / |
\quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
\end{array} | \end{array} | ||
\end{align*} | \end{align*} | ||
- | <--- | + | <<---- |
- | ---> | + | ---->> |
3. $\color{blue}{\text{Idempotence}}$ \\ \\ \\ | 3. $\color{blue}{\text{Idempotence}}$ \\ \\ \\ | ||
\begin{align*} | \begin{align*} | ||
\begin{array}{ll} | \begin{array}{ll} | ||
- | /(a \quad + (b \cdot (/a + c))) & \color{white}{\overline{ab}} | + | /(a \quad \enspace \: + (b \cdot (/a + c)\quad \;)) & \color{white}{\overline{ab}} |
\quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
\end{array} | \end{array} | ||
\end{align*} | \end{align*} | ||
- | <--- | + | <<---- |
- | ---> | + | ---->> |
4. $\color{blue}{\text{Distributive Law}}$ \\ \\ \\ | 4. $\color{blue}{\text{Distributive Law}}$ \\ \\ \\ | ||
\begin{align*} | \begin{align*} | ||
\begin{array}{ll} | \begin{array}{ll} | ||
- | /(a \quad + (\color{blue}{b \cdot (/a + c)})) & \color{white}{\overline{ab}} | + | /(a \quad \enspace \: + (\color{blue}{b \cdot (/a + c)} \quad \;)) & \color{white}{\overline{ab}} |
\quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
\end{array} | \end{array} | ||
\end{align*} | \end{align*} | ||
- | <--- | + | <<---- |
- | ---> | + | ---->> |
4. $\color{blue}{\text{Distributive Law}}$ \\ \\ \\ | 4. $\color{blue}{\text{Distributive Law}}$ \\ \\ \\ | ||
\begin{align*} | \begin{align*} | ||
\begin{array}{ll} | \begin{array}{ll} | ||
- | /(a \quad + ((b \cdot /a) + (b \cdot c)))) & \color{white}{\overline{ab}} | + | /(a \quad \, + ((b \cdot /a) + (b \cdot c))) & |
+ | \quad\quad\quad\quad\quad\quad | ||
+ | \end{array} | ||
+ | \end{align*} | ||
+ | << | ||
+ | |||
+ | ---->> | ||
+ | 5. $\color{blue}{\text{Associative Law}}$ \\ \\ \\ | ||
+ | |||
+ | \begin{align*} | ||
+ | \begin{array}{ll} | ||
+ | / | ||
+ | \quad\quad\quad\quad\quad\quad | ||
+ | \end{array} | ||
+ | \end{align*} | ||
+ | << | ||
+ | |||
+ | ---->> | ||
+ | 5. $\color{blue}{\text{Associative Law}}$ \\ \\ \\ | ||
+ | |||
+ | \begin{align*} | ||
+ | \begin{array}{ll} | ||
+ | /(a \quad \, + \,\,(b \cdot /a) + (b \cdot c)\,\, ) & \color{white}{\overline{ab}} | ||
+ | \quad\quad\quad\quad\quad\quad | ||
+ | \end{array} | ||
+ | \end{align*} | ||
+ | << | ||
+ | |||
+ | ---->> | ||
+ | 6. $\color{blue}{\text{Absorption Law}}$ \\ \\ \\ | ||
+ | |||
+ | \begin{align*} | ||
+ | \begin{array}{ll} | ||
+ | / | ||
+ | \quad\quad\quad\quad\quad\quad | ||
+ | \end{array} | ||
+ | \end{align*} | ||
+ | << | ||
+ | |||
+ | ---->> | ||
+ | 6. $\color{blue}{\text{Absorption Law}}$ \\ \\ \\ | ||
+ | |||
+ | \begin{align*} | ||
+ | \begin{array}{ll} | ||
+ | /(a \quad \, + \quad\enspace b \quad\,\, + (b \cdot c) \,\,) & \color{white}{\overline{ab}} | ||
+ | \quad\quad\quad\quad\quad\quad | ||
+ | \end{array} | ||
+ | \end{align*} | ||
+ | << | ||
+ | |||
+ | ---->> | ||
+ | 7. $\color{blue}{\text{Absorption Law}}$ \\ \\ \\ | ||
+ | |||
+ | \begin{align*} | ||
+ | \begin{array}{ll} | ||
+ | /(a \quad \, + \quad\enspace \color{blue}{b \quad\,\, + (b \cdot c)} \,\,) & \color{white}{\overline{ab}} | ||
+ | \quad\quad\quad\quad\quad\quad | ||
+ | \end{array} | ||
+ | \end{align*} | ||
+ | << | ||
+ | |||
+ | ---->> | ||
+ | 7. $\color{blue}{\text{Absorption Law}}$ \\ \\ \\ | ||
+ | |||
+ | \begin{align*} | ||
+ | \begin{array}{ll} | ||
+ | /(a \quad \, + \quad\enspace b ) \qquad\qquad\quad\; | ||
+ | \quad\quad\quad\quad\quad\quad | ||
+ | \end{array} | ||
+ | \end{align*} | ||
+ | << | ||
+ | |||
+ | ---->> | ||
+ | 8. $\color{blue}{\text{DeMorgan}}$ \\ \\ \\ | ||
+ | |||
+ | \begin{align*} | ||
+ | \begin{array}{ll} | ||
+ | \color{blue}{/ | ||
+ | \quad\quad\quad\quad\quad\quad | ||
+ | \end{array} | ||
+ | \end{align*} | ||
+ | << | ||
+ | |||
+ | ---->> | ||
+ | 8. $\color{blue}{\text{DeMorgan}}$ \\ \\ \\ | ||
+ | |||
+ | \begin{align*} | ||
+ | \begin{array}{ll} | ||
+ | \;/a \quad \, \cdot \quad\enspace /b \qquad\qquad\quad\; | ||
\quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
\end{array} | \end{array} | ||
\end{align*} | \end{align*} | ||
- | <--- | + | <<---- |