Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
Beide Seiten der vorigen Revision Vorhergehende Überarbeitung Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
introduction_to_digital_systems:calc_logic_example [2021/09/16 23:10] – tfischer | introduction_to_digital_systems:calc_logic_example [2021/09/17 00:08] (aktuell) – tfischer | ||
---|---|---|---|
Zeile 1: | Zeile 1: | ||
~~REVEAL ~~ | ~~REVEAL ~~ | ||
- | + | ||
- | ----> | + | ---->> |
example for a simplification with the rule for boolean algebra \\ \\ | example for a simplification with the rule for boolean algebra \\ \\ | ||
\begin{align*} | \begin{align*} | ||
- | \begin{matrix}{ll} | + | \begin{array}{ll} |
- | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ | + | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & |
\quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
- | \end{matrix} | + | \end{array} |
\end{align*} | \end{align*} | ||
- | <---- | ||
- | ----> | + | <<---- |
+ | |||
+ | ---->> | ||
At first we will switch the representation to the following: \\ \\ | At first we will switch the representation to the following: \\ \\ | ||
\begin{align*} | \begin{align*} | ||
- | \begin{matrix}{ll} | + | \begin{array}{ll} |
- | /(a + (b \cdot (/a + c) \cdot 1 ) + a ) & | + | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & |
\quad\quad\quad\quad\quad\quad | \quad\quad\quad\quad\quad\quad | ||
- | \end{matrix} | + | \end{array} |
\end{align*} | \end{align*} | ||
- | <---- | + | <<---- |
+ | ---->> | ||
+ | At first we will switch the representation to the following: \\ \\ | ||
- | ----> | + | \begin{align*} |
- | so lets start $\color{white}{\quad\quad\quad} $\\ | + | \begin{array}{ll} |
+ | /(a + (b \cdot (/a + c) \cdot 1 ) + a ) & | ||
+ | \quad\quad\quad\quad\quad\quad | ||
+ | \end{array} | ||
+ | \end{align*} | ||
+ | << | ||
- | $/(a + (b \cdot (/a + c) \cdot 1 ) + a )$ | + | ---->> |
+ | 1. $\color{blue}{\text{Neutral Element}}$ \\ \\ \\ | ||
+ | \begin{align*} | ||
+ | \begin{array}{ll} | ||
+ | /(a + (b \cdot (/a + c) \color{blue}{\cdot 1} ) + a ) & \color{white}{\overline{ab}} | ||
+ | \quad\quad\quad\quad\quad\quad | ||
+ | \end{array} | ||
+ | \end{align*} | ||
+ | << | ||
- | <---- | + | ---->> |
+ | 1. $\color{blue}{\text{Neutral Element}}$ \\ \\ \\ | ||
+ | |||
+ | \begin{align*} | ||
+ | \begin{array}{ll} | ||
+ | /(a + (b \cdot (/a + c) \quad \; ) + a ) & \color{white}{\overline{ab}} | ||
+ | \quad\quad\quad\quad\quad\quad | ||
+ | \end{array} | ||
+ | \end{align*} | ||
+ | <<---- | ||
- | ----> | + | ---->> |
- | 1. Put space between the digits | + | 2. $\color{blue}{\text{Commutative Law}}$ \\ \\ \\ |
\begin{align*} | \begin{align*} | ||
- | \begin{matrix}{ll} | + | \begin{array}{ll} |
- | /(a + (b \cdot (/a + c) \color{blue}{\cdot 1} ) + a ) & \color{blue}{\text{Neutral Element}} | + | /(a + \color{blue}{(b \cdot (/a + c) \quad \; ) + a }) & \color{white}{\overline{ab}} |
- | \quad\quad\quad\quad\quad\quad | + | \quad\quad\quad\quad\quad\quad |
- | \end{matrix} | + | \end{array} |
\end{align*} | \end{align*} | ||
- | <---- | + | <<---- |
- | ----> | + | ---->> |
- | example for a simplification with the rule for boolean algebra | + | 2. $\color{blue}{\text{Commutative Law}}$ \\ \\ \\ |
- | $\overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a}$ | + | \begin{align*} |
- | <---- | + | \begin{array}{ll} |
+ | /(a + a + (b \cdot (/a + c) \quad \; )) & | ||
+ | \quad\quad\quad\quad\quad\quad | ||
+ | \end{array} | ||
+ | \end{align*} | ||
+ | <<---- | ||
- | ----> | + | ---->> |
- | At first we will switch the representation to the following: | + | 3. $\color{blue}{\text{Idempotence}}$ \\ \\ \\ |
- | $/(a + (b \cdot (/a + c) \cdot 1 ) + a )$ | + | \begin{align*} |
+ | \begin{array}{ll} | ||
+ | /(\color{blue}{a + a} + (b \cdot (/a + c)\quad \;)) & | ||
+ | \quad\quad\quad\quad\quad\quad | ||
+ | \end{array} | ||
+ | \end{align*} | ||
+ | << | ||
- | <---- | + | ---->> |
+ | 3. $\color{blue}{\text{Idempotence}}$ \\ \\ \\ | ||
- | ----> | + | \begin{align*} |
- | so lets start $\color{white}{\quad\quad\quad} $\\ | + | \begin{array}{ll} |
+ | /(a \quad \enspace \: + (b \cdot (/a + c)\quad \;)) & | ||
+ | \quad\quad\quad\quad\quad\quad | ||
+ | \end{array} | ||
+ | \end{align*} | ||
+ | << | ||
- | $/(a + (b \cdot (/a + c) \cdot 1 ) + a )$ | + | ---->> |
+ | 4. $\color{blue}{\text{Distributive Law}}$ \\ \\ \\ | ||
+ | \begin{align*} | ||
+ | \begin{array}{ll} | ||
+ | /(a \quad \enspace \: + (\color{blue}{b \cdot (/a + c)} \quad \;)) & \color{white}{\overline{ab}} | ||
+ | \quad\quad\quad\quad\quad\quad | ||
+ | \end{array} | ||
+ | \end{align*} | ||
+ | << | ||
- | <---- | + | ---->> |
+ | 4. $\color{blue}{\text{Distributive Law}}$ \\ \\ \\ | ||
+ | |||
+ | \begin{align*} | ||
+ | \begin{array}{ll} | ||
+ | /(a \quad \, + ((b \cdot /a) + (b \cdot c))) & \color{white}{\overline{ab}} | ||
+ | \quad\quad\quad\quad\quad\quad | ||
+ | \end{array} | ||
+ | \end{align*} | ||
+ | << | ||
+ | |||
+ | ---->> | ||
+ | 5. $\color{blue}{\text{Associative Law}}$ \\ \\ \\ | ||
+ | |||
+ | \begin{align*} | ||
+ | \begin{array}{ll} | ||
+ | / | ||
+ | \quad\quad\quad\quad\quad\quad | ||
+ | \end{array} | ||
+ | \end{align*} | ||
+ | << | ||
+ | |||
+ | ---->> | ||
+ | 5. $\color{blue}{\text{Associative Law}}$ \\ \\ \\ | ||
+ | |||
+ | \begin{align*} | ||
+ | \begin{array}{ll} | ||
+ | /(a \quad \, + \,\,(b \cdot /a) + (b \cdot c)\,\, ) & \color{white}{\overline{ab}} | ||
+ | \quad\quad\quad\quad\quad\quad | ||
+ | \end{array} | ||
+ | \end{align*} | ||
+ | << | ||
+ | |||
+ | ---->> | ||
+ | 6. $\color{blue}{\text{Absorption Law}}$ \\ \\ \\ | ||
+ | |||
+ | \begin{align*} | ||
+ | \begin{array}{ll} | ||
+ | / | ||
+ | \quad\quad\quad\quad\quad\quad | ||
+ | \end{array} | ||
+ | \end{align*} | ||
+ | << | ||
+ | |||
+ | ---->> | ||
+ | 6. $\color{blue}{\text{Absorption Law}}$ \\ \\ \\ | ||
+ | |||
+ | \begin{align*} | ||
+ | \begin{array}{ll} | ||
+ | /(a \quad \, + \quad\enspace b \quad\,\, + (b \cdot c) \,\,) & \color{white}{\overline{ab}} | ||
+ | \quad\quad\quad\quad\quad\quad | ||
+ | \end{array} | ||
+ | \end{align*} | ||
+ | << | ||
+ | |||
+ | ---->> | ||
+ | 7. $\color{blue}{\text{Absorption Law}}$ \\ \\ \\ | ||
+ | |||
+ | \begin{align*} | ||
+ | \begin{array}{ll} | ||
+ | /(a \quad \, + \quad\enspace \color{blue}{b \quad\,\, + (b \cdot c)} \,\,) & \color{white}{\overline{ab}} | ||
+ | \quad\quad\quad\quad\quad\quad | ||
+ | \end{array} | ||
+ | \end{align*} | ||
+ | << | ||
+ | |||
+ | ---->> | ||
+ | 7. $\color{blue}{\text{Absorption Law}}$ \\ \\ \\ | ||
+ | |||
+ | \begin{align*} | ||
+ | \begin{array}{ll} | ||
+ | /(a \quad \, + \quad\enspace b ) \qquad\qquad\quad\; | ||
+ | \quad\quad\quad\quad\quad\quad | ||
+ | \end{array} | ||
+ | \end{align*} | ||
+ | << | ||
+ | |||
+ | ---->> | ||
+ | 8. $\color{blue}{\text{DeMorgan}}$ \\ \\ \\ | ||
+ | |||
+ | \begin{align*} | ||
+ | \begin{array}{ll} | ||
+ | \color{blue}{/ | ||
+ | \quad\quad\quad\quad\quad\quad | ||
+ | \end{array} | ||
+ | \end{align*} | ||
+ | << | ||
+ | |||
+ | ---->> | ||
+ | 8. $\color{blue}{\text{DeMorgan}}$ \\ \\ \\ | ||
+ | |||
+ | \begin{align*} | ||
+ | \begin{array}{ll} | ||
+ | \;/a \quad \, \cdot \quad\enspace /b \qquad\qquad\quad\; | ||
+ | \quad\quad\quad\quad\quad\quad | ||
+ | \end{array} | ||
+ | \end{align*} | ||
+ | <<---- |