Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
introduction_to_digital_systems:calc_logic_example [2021/09/16 22:58] – angelegt tfischer | introduction_to_digital_systems:calc_logic_example [2021/09/17 00:08] (aktuell) – tfischer | ||
---|---|---|---|
Zeile 1: | Zeile 1: | ||
~~REVEAL ~~ | ~~REVEAL ~~ | ||
- | |||
- | ----> | ||
- | example for a simplification with the rule for boolean algebra | ||
- | $\overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a}$ | ||
- | <---- | ||
- | ----> | + | ---->> |
- | At first we will switch | + | example for a simplification with the rule for boolean algebra \\ \\ |
- | $/(a + (b \cdot (/a + c) \cdot 1 ) + a )$ | + | \begin{align*} |
+ | \begin{array}{ll} | ||
+ | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \\ | ||
+ | \quad\quad\quad\quad\quad\quad | ||
+ | \end{array} | ||
+ | \end{align*} | ||
- | <---- | + | <<---- |
- | ----> | + | ---->> |
- | so lets start | + | At first we will switch the representation to the following: \\ \\ |
- | <---- | + | |
- | ----> | + | \begin{align*} |
- | 1. Put space between | + | \begin{array}{ll} |
+ | \overline{a \lor (b \land (\bar{a} \lor c) \land 1) \lor a} & \color{white}{\overline{ab}} | ||
+ | \quad\quad\quad\quad\quad\quad | ||
+ | \end{array} | ||
+ | \end{align*} | ||
+ | << | ||
+ | ---->> | ||
+ | At first we will switch | ||
\begin{align*} | \begin{align*} | ||
- | \begin{smallmatrix} | + | \begin{array}{ll} |
- | \color{black}{\text{numeral}: | + | /(a + (b \cdot (/a + c) \cdot 1 ) + a ) |
- | \color{white}{\text{index}: | + | \quad\quad\quad\quad\quad\quad |
- | \color{white}{\text{place factor}: | + | \end{array} |
- | \color{white}{} | + | |
- | \color{white}{\text{digits | + | |
- | \color{white}{\text{place value}: | + | |
- | \color{white}{\text{result}: | + | |
- | \end{smallmatrix} | + | |
\end{align*} | \end{align*} | ||
- | <---- | + | <<---- |
- | ----> | + | ---->> |
- | 2. Write down the index for each position. \\ $\quad$ | + | 1. $\color{blue}{\text{Neutral Element}}$ \\ \\ \\ |
\begin{align*} | \begin{align*} | ||
- | \begin{smallmatrix} | + | \begin{array}{ll} |
- | \color{black}{\text{numeral}: | + | /(a + (b \cdot (/a + c) \color{blue}{\cdot 1} ) + a ) |
- | \color{blue }{\text{index}: | + | \quad\quad\quad\quad\quad\quad |
- | \color{white}{\text{place factor}: | + | \end{array} |
- | \color{white}{} | + | |
- | \color{white}{\text{digits | + | |
- | \color{white}{\text{place value}: | + | |
- | \color{white}{\text{result}: | + | |
- | \end{smallmatrix} | + | |
\end{align*} | \end{align*} | ||
- | <---- | + | <<---- |
+ | ---->> | ||
+ | 1. $\color{blue}{\text{Neutral Element}}$ \\ \\ \\ | ||
- | ----> | + | \begin{align*} |
- | 3. calculate the place factor | + | \begin{array}{ll} |
+ | /(a + (b \cdot (/a + c) \quad \; ) + a ) & \color{white}{\overline{ab}} | ||
+ | \quad\quad\quad\quad\quad\quad | ||
+ | \end{array} | ||
+ | \end{align*} | ||
+ | << | ||
+ | |||
+ | ---->> | ||
+ | 2. $\color{blue}{\text{Commutative Law}}$ \\ \\ \\ | ||
\begin{align*} | \begin{align*} | ||
- | \begin{smallmatrix} | + | \begin{array}{ll} |
- | \color{black}{\text{numeral}: | + | /(a + \color{blue}{(b \cdot (/a + c) \quad \; ) + a }) |
- | \color{black}{\text{index}: | + | \quad\quad\quad\quad\quad\quad |
- | \color{blue }{\text{place factor}: | + | \end{array} |
- | \color{white}{} | + | |
- | \color{white}{\text{digits | + | |
- | \color{white}{\text{place value}: | + | |
- | \color{white}{\text{result}: | + | |
- | \end{smallmatrix} | + | |
\end{align*} | \end{align*} | ||
- | <---- | + | <<---- |
+ | ---->> | ||
+ | 2. $\color{blue}{\text{Commutative Law}}$ \\ \\ \\ | ||
- | ----> | + | \begin{align*} |
- | 3. calculate the place factor | + | \begin{array}{ll} |
+ | /(a + a + (b \cdot (/a + c) \quad \; )) & \color{white}{\overline{ab}} | ||
+ | \quad\quad\quad\quad\quad\quad | ||
+ | \end{array} | ||
+ | \end{align*} | ||
+ | << | ||
+ | |||
+ | ---->> | ||
+ | 3. $\color{blue}{\text{Idempotence}}$ \\ \\ \\ | ||
\begin{align*} | \begin{align*} | ||
- | \begin{smallmatrix} | + | \begin{array}{ll} |
- | \color{black}{\text{numeral}: | + | /(\color{blue}{a + a} + (b \cdot (/a + c)\quad \;)) |
- | \color{black}{\text{index}: | + | \quad\quad\quad\quad\quad\quad |
- | \color{blue }{\text{place factor}:} & | + | \end{array} |
- | \color{blue }{} & \color{blue }{} & \color{blue }{1000} | + | |
- | \color{white}{\text{digits | + | |
- | \color{white}{\text{place value}: | + | |
- | \color{white}{\text{result}: | + | |
- | \end{smallmatrix} | + | |
\end{align*} | \end{align*} | ||
- | <---- | + | <<---- |
+ | ---->> | ||
+ | 3. $\color{blue}{\text{Idempotence}}$ \\ \\ \\ | ||
- | ----> | + | \begin{align*} |
- | 4. write down each digit of the numeral | + | \begin{array}{ll} |
+ | /(a \quad \enspace \: + (b \cdot (/a + c)\quad \;)) & \color{white}{\overline{ab}} | ||
+ | \quad\quad\quad\quad\quad\quad | ||
+ | \end{array} | ||
+ | \end{align*} | ||
+ | <<---- | ||
+ | |||
+ | ---->> | ||
+ | 4. $\color{blue}{\text{Distributive Law}}$ \\ \\ \\ | ||
\begin{align*} | \begin{align*} | ||
- | \begin{smallmatrix} | + | \begin{array}{ll} |
- | \color{black}{\text{numeral}: | + | /(a \quad \enspace |
- | \color{black}{\text{index}: | + | \quad\quad\quad\quad\quad\quad |
- | \color{black}{\text{place factor}:} & \color{black}{B^i} | + | \end{array} |
- | \color{black}{} | + | |
- | \color{blue }{\text{digits | + | |
- | \color{white}{\text{place value}: | + | |
- | \color{white}{\text{result}: | + | |
- | \end{smallmatrix} | + | |
\end{align*} | \end{align*} | ||
- | <---- | + | <<---- |
+ | ---->> | ||
+ | 4. $\color{blue}{\text{Distributive Law}}$ \\ \\ \\ | ||
- | ----> | + | \begin{align*} |
- | 5. calculate the place value | + | \begin{array}{ll} |
+ | /(a \quad \, + ((b \cdot /a) + (b \cdot c))) & \color{white}{\overline{ab}} | ||
+ | \quad\quad\quad\quad\quad\quad | ||
+ | \end{array} | ||
+ | \end{align*} | ||
+ | <<---- | ||
+ | |||
+ | ---->> | ||
+ | 5. $\color{blue}{\text{Associative Law}}$ \\ \\ \\ | ||
\begin{align*} | \begin{align*} | ||
- | \begin{smallmatrix} | + | \begin{array}{ll} |
- | \color{black}{\text{numeral}: | + | /(\color{blue}{a \quad \, + ((b \cdot /a) + (b \cdot c))}) |
- | \color{black}{\text{index}: | + | \quad\quad\quad\quad\quad\quad |
- | \color{black}{\text{place factor}: | + | \end{array} |
- | \color{black}{} | + | |
- | \color{black}{\text{digits | + | |
- | \color{blue }{\text{place value}: | + | |
- | \color{white}{\text{result}: | + | |
- | \end{smallmatrix} | + | |
\end{align*} | \end{align*} | ||
- | <---- | + | <<---- |
- | ----> | + | ---->> |
- | 6.Add all place values | + | 5. $\color{blue}{\text{Associative Law}}$ \\ \\ \\ |
\begin{align*} | \begin{align*} | ||
- | \begin{smallmatrix} | + | \begin{array}{ll} |
- | \color{black}{\text{numeral}: | + | /(a \quad \, + \,\,(b \cdot /a) + (b \cdot c)\,\, ) |
- | \color{black}{\text{index}: | + | \quad\quad\quad\quad\quad\quad |
- | \color{black}{\text{place factor}: | + | \end{array} |
- | \color{black}{} | + | |
- | \color{black}{\text{digits | + | |
- | \color{black}{\text{place value}: | + | |
- | \color{blue }{\text{result}: | + | |
- | \end{smallmatrix} | + | |
\end{align*} | \end{align*} | ||
- | <---- | + | <<---- |
+ | ---->> | ||
+ | 6. $\color{blue}{\text{Absorption Law}}$ \\ \\ \\ | ||
+ | \begin{align*} | ||
+ | \begin{array}{ll} | ||
+ | / | ||
+ | \quad\quad\quad\quad\quad\quad | ||
+ | \end{array} | ||
+ | \end{align*} | ||
+ | << | ||
+ | |||
+ | ---->> | ||
+ | 6. $\color{blue}{\text{Absorption Law}}$ \\ \\ \\ | ||
+ | |||
+ | \begin{align*} | ||
+ | \begin{array}{ll} | ||
+ | /(a \quad \, + \quad\enspace b \quad\,\, + (b \cdot c) \,\,) & \color{white}{\overline{ab}} | ||
+ | \quad\quad\quad\quad\quad\quad | ||
+ | \end{array} | ||
+ | \end{align*} | ||
+ | << | ||
+ | |||
+ | ---->> | ||
+ | 7. $\color{blue}{\text{Absorption Law}}$ \\ \\ \\ | ||
+ | |||
+ | \begin{align*} | ||
+ | \begin{array}{ll} | ||
+ | /(a \quad \, + \quad\enspace \color{blue}{b \quad\,\, + (b \cdot c)} \,\,) & \color{white}{\overline{ab}} | ||
+ | \quad\quad\quad\quad\quad\quad | ||
+ | \end{array} | ||
+ | \end{align*} | ||
+ | << | ||
+ | |||
+ | ---->> | ||
+ | 7. $\color{blue}{\text{Absorption Law}}$ \\ \\ \\ | ||
+ | |||
+ | \begin{align*} | ||
+ | \begin{array}{ll} | ||
+ | /(a \quad \, + \quad\enspace b ) \qquad\qquad\quad\; | ||
+ | \quad\quad\quad\quad\quad\quad | ||
+ | \end{array} | ||
+ | \end{align*} | ||
+ | << | ||
+ | |||
+ | ---->> | ||
+ | 8. $\color{blue}{\text{DeMorgan}}$ \\ \\ \\ | ||
+ | |||
+ | \begin{align*} | ||
+ | \begin{array}{ll} | ||
+ | \color{blue}{/ | ||
+ | \quad\quad\quad\quad\quad\quad | ||
+ | \end{array} | ||
+ | \end{align*} | ||
+ | << | ||
+ | |||
+ | ---->> | ||
+ | 8. $\color{blue}{\text{DeMorgan}}$ \\ \\ \\ | ||
+ | |||
+ | \begin{align*} | ||
+ | \begin{array}{ll} | ||
+ | \;/a \quad \, \cdot \quad\enspace /b \qquad\qquad\quad\; | ||
+ | \quad\quad\quad\quad\quad\quad | ||
+ | \end{array} | ||
+ | \end{align*} | ||
+ | << |