DW EditSeite anzeigenÄltere VersionenLinks hierherAlles aus-/einklappenNach oben Diese Seite ist nicht editierbar. Sie können den Quelltext sehen, jedoch nicht verändern. Kontaktieren Sie den Administrator, wenn Sie glauben, dass hier ein Fehler vorliegt. <WRAP pagebreak></WRAP> <panel type="info" title="Aufgabe 2.1.4 Berechnung des differentiellen Widerstands einer Diode"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> <WRAP right> <imgcaption BildIdealisierteDiode | Idealisierte Diode> </imgcaption> {{drawio>BildIdealisierteDiode}} </WRAP> Der differentielle Widerstand $r_D$ einer Diode wurde bereits im Kapitel beschrieben. Dieser ist notwendig, wenn eine Diode über ein vereinfachtes Dioden-Modell (Spannungsquelle + Widerstand + ggf. ideale Diode) nachgebildet werden soll. In <imgref BildIdealisierteDiode> sehen Sie den differentiellen Leitwert $g_D={{1}\over{r_D}}$ als lokale Steigung am gewünschten Arbeitspunkt. Berechnen Sie den differentiellen Widerstand $r_D$ bei einem Durchlassstrom $I_D=15 mA$ für Raumtemperatur ($T=293K$) und $m=1$ aus der Shockley-Gleichung: ${I_F = I_S(T)\cdot (e^{\frac{U_F}{m\cdot U_T}}-1)}$ mit $U_T = \frac{k_B \cdot T}{e}$ Berechnen Sie dazu zunächst die allgemeine Formel für den differentiellen Widerstand $r_D$. Schritte: - Vereinfachen Sie als erstes die Shockley-Gleichung für $U_F >> U_T$ <WRAP onlyprint> \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ </WRAP> - Ermitteln Sie eine Formel für $\frac {d I_F}{d U_F}$.<WRAP onlyprint> \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ </WRAP> - Ersetzen Sie einen Teil des Ergebnisses wiederum durch $I_F$ und drehen Sie den Bruch für die Berechnung des differentiellen Widerstands um $r_D = \frac {d U_F}{d I_F}$. \\ Als Ergebnis sollte nun $r_D = \frac {d U_F}{d I_F} = \frac {m \cdot U_T}{I_F} $ vorliegen <WRAP onlyprint> \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ </WRAP> - Rechnen Sie $r_D$ aus. <WRAP onlyprint> \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ </WRAP> </WRAP></WRAP></panel> CKG Edit