Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
Beide Seiten der vorigen Revision Vorhergehende Überarbeitung Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
elektronische_schaltungstechnik:rechnung_umkehrintegrator [2020/05/21 18:12] – tfischer | elektronische_schaltungstechnik:rechnung_umkehrintegrator [2021/06/24 13:59] (aktuell) – tfischer | ||
---|---|---|---|
Zeile 1: | Zeile 1: | ||
- | ~~REVEAL theme=whide& | + | ~~REVEAL theme=white& |
----> | ----> | ||
|$U_A = f(U_E)$ | |$U_A = f(U_E)$ | ||
- | |$\qquad\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad$| | + | |$\qquad\qquad\qquad\qquad\qquad\quad$|$\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad$| |
<---- | <---- | ||
----> | ----> | ||
- | |$U_A=\color{blue}{-U_D}-U_C$ | + | |$U_A=\color{blue}{-U_D}-U_C$ |
- | |$\qquad\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad$| | + | |$\qquad\qquad\qquad\qquad\qquad\quad$|$\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad$| |
<---- | <---- | ||
----> | ----> | ||
- | |$U_A= \quad \quad 0 \quad -\color{blue}{U_C}$|mit V.|$\color{blue}{U_C}={ 1 \over C }\cdot(\int_{t_0}^{t_1} I_C \ dt+ Q_0(t_0))$| | + | |$U_A= \quad 0 \quad -\color{blue}{U_C}$|mit V.|$\color{blue}{U_C}={ 1 \over C }\cdot(\int_{t_0}^{t_1} I_C \ dt+ Q_0(t_0))$| |
- | |$\qquad\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad$| | + | |$\qquad\qquad\qquad\qquad\qquad\quad$|$\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad$| |
<---- | <---- | ||
----> | ----> | ||
- | |$U_A = -{ 1 \over C }\cdot(\int_{t_0}^{t_1} \color{blue}{I_C} \ dt+ Q_0(t_0)) $|mit IV.|$\color{blue}{I_C}=I_R$| | + | |$U_A = {-{ 1 \over C }\cdot}(\int_{t_0}^{t_1} \color{blue}{I_C} \ dt+ Q_0(t_0)) $|mit IV.|$\color{blue}{I_C}=I_R$| |
- | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | + | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| |
<---- | <---- | ||
----> | ----> | ||
|$U_A = \color{blue}{-{ 1 \over C }\cdot(}\int_{t_0}^{t_1} I_R \ dt+ Q_0(t_0)\color{blue}{)} $|Ausklammern| | |$U_A = \color{blue}{-{ 1 \over C }\cdot(}\int_{t_0}^{t_1} I_R \ dt+ Q_0(t_0)\color{blue}{)} $|Ausklammern| | ||
- | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | + | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| |
<---- | <---- | ||
----> | ----> | ||
|$U_A = -{ 1 \over C }\cdot\int_{t_0}^{t_1} I_R \ dt - \color{blue}{ Q_0(t_0) \over C } $|Integrationskonstante \\ betrachten|$\color{blue}{ Q_0(t_0) \over C }= U_C(t_0) = -U_{A0}$| | |$U_A = -{ 1 \over C }\cdot\int_{t_0}^{t_1} I_R \ dt - \color{blue}{ Q_0(t_0) \over C } $|Integrationskonstante \\ betrachten|$\color{blue}{ Q_0(t_0) \over C }= U_C(t_0) = -U_{A0}$| | ||
- | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | + | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| |
<---- | <---- | ||
----> | ----> | ||
|$U_A = -{ 1 \over C }\cdot\int_{t_0}^{t_1} \color{blue}{I_R} \ dt + U_{A0}$|mit VI. und II.|$\color{blue}{I_R}={ U_R \over R}={ U_E \over R} $| | |$U_A = -{ 1 \over C }\cdot\int_{t_0}^{t_1} \color{blue}{I_R} \ dt + U_{A0}$|mit VI. und II.|$\color{blue}{I_R}={ U_R \over R}={ U_E \over R} $| | ||
- | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | + | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| |
<---- | <---- | ||
----> | ----> | ||
|$U_A = -{ 1 \over C }\cdot\int_{t_0}^{t_1} \color{blue}{1 \over R} \cdot U_E \ dt + U_{A0}$|Konstante vorziehen| | |$U_A = -{ 1 \over C }\cdot\int_{t_0}^{t_1} \color{blue}{1 \over R} \cdot U_E \ dt + U_{A0}$|Konstante vorziehen| | ||
- | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | + | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| |
<---- | <---- | ||
----> | ----> | ||
- | |$U_A = -{ 1 \over {R\cdot C} }\cdot\int_{t_0}^{t_1} U_E \ dt + U_{A0}$| Zeitkonstante $\tau = R \cdot C$ einfügen | | + | |$U_A = -{ 1 \over {R\cdot C} }\cdot\int_{t_0}^{t_1} U_E \ dt + U_{A0}$| Zeitkonstante |
- | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | + | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| |
<---- | <---- | ||
----> | ----> | ||
- | |<WRAP hi>$U_A = -{ 1 \over {\tau} }\cdot\int_{t_0}^{t_1} U_E \ dt + U_{A0}$</ | + | |$U_A = -{ 1 \over {\tau} }\cdot\int_{t_0}^{t_1} U_E \ dt + U_{A0}$| | | |
- | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| | + | |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$| |
<---- | <---- | ||
- | |||