Dies ist eine alte Version des Dokuments!
$I.\quad$ Betrachtung der Ströme
aus (2+3) | $\color{blue}{I_p} = \color{blue}{I_m} = 0$ | $I_p$ und $I_m$ sind damit definiert |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
aus (7) | $\color{blue}{I_o} = I_1 $ | $I_o$ ist damit bekannt, wenn $I_1$ bekannt ist |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
aus (8) und (3) | $I_1 - I_2 -\color{blue}{0} = 0 $ | $\quad$ |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $I_1 = I_2 = I_o$ | $\quad$ |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $\color{blue}{I_1} = \color{blue}{I_2} = \color{blue}{I_o} $ | mit (9) und (10): $I_\boxed{}=\frac{U_\boxed{}}{R_\boxed{}}$ und (6) |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $\frac{U_1}{R_1}= \frac{U_2}{R_2} = \frac{U_A}{R_1 + R_2}$ | Spannungsteilerformel, $I=const.$ |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
(11) | $U_2= U_A\cdot\frac{R_2}{R_1+R_2}$ | Spannungsteilerformel |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$II.\quad$ Betrachtung der Spannungsverstärkung
aus (0) | $\color{blue}{A_V}=\frac{U_A}{U_E}$ | $\quad$ |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{U_A}{\color{blue}{U_E}}$ | mit (5) |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{U_A}{\color{blue}{U_2+U_D}}$ | $\quad$ |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{U_A}{\color{blue}{U_2}+U_D}$ | mit (11):$U_2= U_A\cdot\frac{R_2}{R_1+R_2}$ |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{U_A}{\color{blue}{U_A\cdot\frac{R_2}{R_1+R_2}}+U_D}$ | $\quad$ |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{U_A}{U_A\cdot\frac{R_2}{R_1+R_2}+U_D}$ | $\quad$ |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{U_A}{U_A\cdot\frac{R_2}{R_1+R_2}+\color{blue}{U_D}}$ | mit (1) |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{U_A}{U_A\cdot\frac{R_2}{R_1+R_2}+\color{blue}{\frac{U_A}{A_D}}}$ | $\quad$ |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{U_A}{U_A\cdot\frac{R_2}{R_1+R_2}+\frac{U_A}{A_D}}$ | $\quad$ |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{\color{blue}{U_A}}{\color{blue}{U_A}\cdot\frac{R_2}{R_1+R_2}+\frac{\color{blue}{U_A}}{A_D}}$ | Erweitern mit $\frac{1}{U_A}$ |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{1}{\frac{R_2}{R_1+R_2}+\frac{1}{A_D}}$ | $\quad$ |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{1}{\frac{R_2}{R_1+R_2}+\color{blue}{\frac{1}{A_D}}}$ | mit $\frac{1}{A_D} \xrightarrow{A_D \rightarrow \infty} 0$ |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{1}{\frac{R_2}{R_1+R_2}}$ | $\quad$ |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |
$\quad$ | $A_V=\frac{R_1+R_2}{R_2}$ | $\quad$ |
$\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ | $\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad$ |