Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
Beide Seiten der vorigen Revision Vorhergehende Überarbeitung Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
electrical_engineering_2:the_magnetostatic_field [2024/04/28 17:43] – mexleadmin | electrical_engineering_2:the_magnetostatic_field [2025/04/29 02:45] (aktuell) – mexleadmin | ||
---|---|---|---|
Zeile 520: | Zeile 520: | ||
</ | </ | ||
- | Please have a look at the German contents (text, videos, exercises) on the page of the [[https://lx3.mint-kolleg.kit.edu/ | + | Please have a look at the German contents (text, videos, exercises) on the page of the [[https://obkp.mint-kolleg.kit.edu/ |
===== 3.4 Matter in the Magnetic Field ===== | ===== 3.4 Matter in the Magnetic Field ===== | ||
Zeile 897: | Zeile 897: | ||
</ | </ | ||
- | <panel type=" | + | <panel type=" |
< | < | ||
Zeile 907: | Zeile 907: | ||
Given are the adjacent closed trajectories in the magnetic field of current-carrying conductors (see <imgref BildNr05> | Given are the adjacent closed trajectories in the magnetic field of current-carrying conductors (see <imgref BildNr05> | ||
- | In each case, the magnetic | + | In each case, the magnetic |
# | # | ||
- | * The magnetic | + | * The magnetic |
* The direction of the current and the path have to be considered with the righthand rule. | * The direction of the current and the path have to be considered with the righthand rule. | ||
Zeile 918: | Zeile 918: | ||
# | # | ||
- | a) $\theta_\rm a = - I_1 = - 2~\rm A$ \\ | + | a) $V_{\rm m,a} = - I_1 = - 2~\rm A$ \\ |
# | # | ||
# | # | ||
- | b) $\theta_\rm b = - I_2 = - 4.5~\rm A$ \\ | + | b) $V_{\rm m,b} = - I_2 = - 4.5~\rm A$ \\ |
# | # | ||
# | # | ||
- | c) $\theta_\rm c = 0 $ \\ | + | c) $V_{\rm m,c} = 0 $ \\ |
# | # | ||
# | # | ||
- | d) $\theta_\rm d = + I_1 - I_2 = 2~\rm A - 4.5~\rm A = - 2.5~\rm A$ \\ | + | d) $V_{\rm m,d} = + I_1 - I_2 = 2~\rm A - 4.5~\rm A = - 2.5~\rm A$ \\ |
# | # | ||
# | # | ||
- | e) $\theta_\rm e = + I_1 = + 2~\rm A$ \\ | + | e) $V_{\rm m,e} = + I_1 = + 2~\rm A$ \\ |
# | # | ||
# | # | ||
- | f) $\theta_\rm f = 2 \cdot (- I_1) = - 4~\rm A$ \\ | + | f) $V_{\rm m,f} = 2 \cdot (- I_1) = - 4~\rm A$ \\ |
# | # | ||
Zeile 971: | Zeile 971: | ||
\begin{align*} | \begin{align*} | ||
I &= {{B \cdot l}\over{\mu \cdot N}} \\ | I &= {{B \cdot l}\over{\mu \cdot N}} \\ | ||
- | &= {{1.2 ~\rm T \cdot 1 ~\rm m}\over{4\pi\cdot 10^-7 {\rm{Vs}\over{Am}} | + | &= {{1.2 ~\rm T \cdot 1 ~\rm m}\over{4\pi\cdot 10^{-7} {\rm{Vs}\over{Am}} |
\end{align*} | \end{align*} | ||
Zeile 994: | Zeile 994: | ||
\begin{align*} | \begin{align*} | ||
I &= {{B \cdot l}\over{\mu \cdot N}} \\ | I &= {{B \cdot l}\over{\mu \cdot N}} \\ | ||
- | &= {{1.2 ~\rm T \cdot 1 ~\rm m}\over{10' | + | &= {{1.2 ~\rm T \cdot 1 ~\rm m}\over{10' |
\end{align*} | \end{align*} | ||
Zeile 1013: | Zeile 1013: | ||
<panel type=" | <panel type=" | ||
- | An electron shall move with the velocity $\vec{v}$ in a plate capacitor parallel to the plates, which have a potential difference $U$ and a distance $d$. | + | An electron |
- | In the vacuum in between the plates | + | It shall move with the velocity $\vec{v}$ in the plate capacitor parallel to the plates. |
+ | The plates | ||
+ | In the vacuum in between the plates, there is also a magnetic field $\vec{B}$ | ||
< | < | ||
Zeile 1023: | Zeile 1025: | ||
Calculate the velocity depending on the other parameters $\vec{v} = f(U, |\vec{B}|, d) $! | Calculate the velocity depending on the other parameters $\vec{v} = f(U, |\vec{B}|, d) $! | ||
+ | |||
+ | <button size=" | ||
+ | * Think about the two forces on the electron from the fields - gravity is ignored. \\ Write their definitions down. | ||
+ | * With which relationship between these two forces does the electron moves through the plate capacitor __parallel__ to the plates? \\ So the trajectory neither get bent up nor down. | ||
+ | * What is the relationship between the $E$-field in the plate capacitor and the electric voltage $U$? | ||
+ | </ | ||
<button size=" | <button size=" |