Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
Beide Seiten der vorigen Revision Vorhergehende Überarbeitung | |||
electrical_engineering_2:task_1.2.1_with_calc [2023/03/15 13:20] – mexleadmin | electrical_engineering_2:task_1.2.1_with_calc [2024/06/25 23:11] (aktuell) – [Bearbeiten - Panel] mexleadmin | ||
---|---|---|---|
Zeile 1: | Zeile 1: | ||
- | <panel type=" | + | <panel type=" |
<WRAP right> | <WRAP right> | ||
Zeile 14: | Zeile 14: | ||
<button size=" | <button size=" | ||
- | * How have the forces be prepared, | + | * How have the forces be prepared, to add them correctly? |
</ | </ | ||
Zeile 24: | Zeile 24: | ||
The forces have to be resolved into coordinates. Here, it is recommended to use an orthogonal coordinate system ($x$ and $y$). \\ | The forces have to be resolved into coordinates. Here, it is recommended to use an orthogonal coordinate system ($x$ and $y$). \\ | ||
- | The coordinate system | + | The coordinate system shall be in such a way, that the origin |
- | For the resolution of the coordinates it is necessary to get the angles $\alpha_{0n}$ of the forces with respect to the x-axis. \\ | + | For the resolution of the coordinates, it is necessary to get the angles $\alpha_{0n}$ of the forces with respect to the x-axis. \\ |
- | In the chosen coordinate system this leads to: $\alpha_{0n} = atan(\frac{\Delta y}{\Delta x})$ \\ | + | In the chosen coordinate system this leads to: $\alpha_{0n} = \arctan(\frac{\Delta y}{\Delta x})$ \\ |
- | $\alpha_{01} = \rm{atan}(\frac{3}{1})= 1.249 = 71.6°$ \\ | + | $\alpha_{01} = \arctan(\frac{3}{1})= 1.249 = 71.6°$ \\ |
- | $\alpha_{02} = \rm{atan}(\frac{4}{3})= 0.927 = 53.1°$ \\ | + | $\alpha_{02} = \arctan(\frac{4}{3})= 0.927 = 53.1°$ \\ |
- | $\alpha_{03} = \rm{atan}(\frac{0}{3})= 0= 0°$ \\ | + | $\alpha_{03} = \arctan(\frac{0}{3})= 0= 0°$ \\ |
Consequently, | Consequently, | ||
\begin{align*} | \begin{align*} | ||
- | F_{x,0} &= F_{x,01} + F_{x,02} + F_{x,03} && | \quad \text{with } F_{x,0n} = F_{0n} \cdot \rm{sin}(\alpha_{0n}) | ||
- | F_{x,0} &= (-5~\rm{N}) \cdot \rm{sin}(71.6°) + (-6~\rm{N}) \cdot \rm{sin}(53.1°) + (+3~\rm{N}) \cdot \rm{sin}(0°) | ||
- | F_{x,0} &= -2.18 ~\rm{N} | ||
- | F_{y,0} &= F_{x,01} + F_{x,02} + F_{x,03} && | \quad \text{with } F_{y,0n} = F_{0n} \cdot \rm{cos}(\alpha_{0n}) | + | F_{x,0} &= F_{x,01} + F_{x,02} + F_{x,03} && | \quad \text{with } F_{x,0n} = F_{0n} \cdot \cos(\alpha_{0n}) |
- | F_{y,0} &= (-5~\rm{N}) \cdot \rm{cos}(71.6°) + (-6~\rm{N}) \cdot \rm{cos}(53.1°) + (+3~\rm{N}) \cdot cos(0°) \\ | + | F_{x,0} &= (-5~\rm{N}) \cdot \cos(71.6°) + (-6~\rm{N}) \cdot \cos(53.1°) + (+3~\rm{N}) \cdot \cos(0°) \\ |
- | F_{y,0} &= -9.54 ~\rm{N} | + | F_{x,0} &= -9.54 ~\rm{N} |
+ | |||
+ | F_{y,0} &= F_{y,01} + F_{y,02} + F_{y,03} && | \quad \text{with } F_{y,0n} = F_{0n} \cdot \sin(\alpha_{0n}) | ||
+ | F_{y,0} &= (-5~\rm{N}) \cdot \sin(71.6°) + (-6~\rm{N}) \cdot \sin(53.1°) + (+3~\rm{N}) \cdot \sin(0°) \\ | ||
+ | F_{y,0} &= -2.18 ~\rm{N} | ||
\end{align*} | \end{align*} | ||
Zeile 49: | Zeile 50: | ||
<button size=" | <button size=" | ||
\begin{align*} | \begin{align*} | ||
- | F_0 &= \sqrt{ (-2.18 ~\rm{N})^2 + (-9.54 ~\rm{N})^2 } = 9.79 ~\rm{N} \rightarrow 9.8 ~\rm{N} \\ | + | F_0 &= \sqrt{ (-9.54 ~\rm{N})^2 + (-2.18 ~\rm{N})^2} = 9.79 ~\rm{N} \rightarrow 9.8 ~\rm{N} \\ |
\end{align*} | \end{align*} | ||
\\ | \\ |