Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
electrical_engineering_2:task_1.2.1_with_calc [2023/03/10 11:26] mexleadminelectrical_engineering_2:task_1.2.1_with_calc [2024/06/25 23:11] (aktuell) – [Bearbeiten - Panel] mexleadmin
Zeile 1: Zeile 1:
-<panel type="info" title="Task 1.2.1 Multiple Forces on a Charge I (exam task, ca 8% of a 60 minute exam, WS2020)"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>+<panel type="info" title="Task 1.2.1 Multiple Forces on a Charge I (exam task, ca 8% of a 60-minute exam, WS2020)"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
 <WRAP right> <WRAP right>
-{{elektrotechnik_1:kraefteadditiongeometriei.jpg?400}}+{{drawio>electrical_engineering_2:kraefteadditiongeometriei.svg}}
 </WRAP> </WRAP>
  
 Given is the arrangement of electric charges in the picture on the right. \\ Given is the arrangement of electric charges in the picture on the right. \\
 The following force effects result: \\ The following force effects result: \\
-$F_{01}=-5 ~N$ \\ +$F_{01}=-5 ~\rm{N}$ \\ 
-$F_{02}=-6 ~N$ \\ +$F_{02}=-6 ~\rm{N}$ \\ 
-$F_{03}=+3 ~N$+$F_{03}=+3 ~\rm{N}$
  
 Calculate the magnitude of the resulting force. Calculate the magnitude of the resulting force.
  
 <button size="xs" type="link" collapse="Loesung_5_2_1_1_Tipps">{{icon>eye}} Tips for the Solution</button><collapse id="Loesung_5_2_1_1_Tipps" collapsed="true"> <button size="xs" type="link" collapse="Loesung_5_2_1_1_Tipps">{{icon>eye}} Tips for the Solution</button><collapse id="Loesung_5_2_1_1_Tipps" collapsed="true">
-  * How have the forces be prepared, in order to add them correctly? +  * How have the forces be prepared, to add them correctly? 
 </collapse> </collapse>
  
Zeile 24: Zeile 24:
  
 The forces have to be resolved into coordinates. Here, it is recommended to use an orthogonal coordinate system ($x$ and $y$). \\ The forces have to be resolved into coordinates. Here, it is recommended to use an orthogonal coordinate system ($x$ and $y$). \\
-The coordinate system  shall be in such a way, that the origin lays in $Q_0$, the x-axis is directed towards $Q_3$ and the y-axis is orthogonal to it. \\ +The coordinate system shall be in such a way, that the origin lies in $Q_0$, the x-axis is directed towards $Q_3$ and the y-axis is orthogonal to it. \\ 
-For the resolution of the coordinates it is necessary to get the angles $\alpha_{0n}$ of the forces with respect to the x-axis. \\ +For the resolution of the coordinatesit is necessary to get the angles $\alpha_{0n}$ of the forces with respect to the x-axis. \\ 
-In the chosen coordinate system this leads to: $\alpha_{0n} = atan(\frac{\Delta y}{\Delta x})$ \\ +In the chosen coordinate system this leads to: $\alpha_{0n} = \arctan(\frac{\Delta y}{\Delta x})$ \\ 
-$\alpha_{01} = atan(\frac{3}{1})= 1.249 = 71.6°$ \\ +$\alpha_{01} = \arctan(\frac{3}{1})= 1.249 = 71.6°$ \\ 
-$\alpha_{02} = atan(\frac{4}{3})= 0.927 = 53.1°$ \\ +$\alpha_{02} = \arctan(\frac{4}{3})= 0.927 = 53.1°$ \\ 
-$\alpha_{03} = atan(\frac{0}{3})= 0= 0°$ \\+$\alpha_{03} = \arctan(\frac{0}{3})= 0= 0°$ \\
  
 Consequently, the resolved forces are: \\ \\ Consequently, the resolved forces are: \\ \\
  
 \begin{align*} \begin{align*}
-F_{x,0} &= F_{x,01} + F_{x,02} + F_{x,03} && | \quad \text{mit } F_{x,0n} = F_{0n} \cdot sin(\alpha_{0n})  \\  
-F_{x,0} &= (-5~N) \cdot sin(71.6°) + (-6~N) \cdot sin(53.1°) + (+3~N) \cdot sin(0°)  \\  
-F_{x,0} &= -2.18 ~N  \\ \\ 
  
-F_{y,0} &= F_{x,01} + F_{x,02} + F_{x,03} && | \quad \text{mit } F_{y,0n} = F_{0n} \cdot cos(\alpha_{0n})  \\  +F_{x,0} &= F_{x,01} + F_{x,02} + F_{x,03} && | \quad \text{with } F_{x,0n} = F_{0n} \cdot \cos(\alpha_{0n})  \\  
-F_{y,0} &= (-5~N) \cdot cos(71.6°) + (-6~N) \cdot cos(53.1°) + (+3~N) \cdot cos(0°)  \\  +F_{x,0} &= (-5~\rm{N}) \cdot \cos(71.6°) + (-6~\rm{N}) \cdot \cos(53.1°) + (+3~\rm{N}) \cdot \cos(0°)  \\  
-F_{y,0} &= -9.54 ~N  \\ \\+F_{x,0} &= -9.54 ~\rm{N}  \\ \\ 
 + 
 +F_{y,0} &= F_{y,01} + F_{y,02} + F_{y,03} && | \quad \text{with } F_{y,0n} = F_{0n} \cdot \sin(\alpha_{0n})  \\  
 +F_{y,0} &= (-5~\rm{N}) \cdot \sin(71.6°) + (-6~\rm{N}) \cdot \sin(53.1°) + (+3~\rm{N}) \cdot \sin(0°)  \\  
 +F_{y,0} &= -2.18 ~\rm{N}  \\ \\
  
 \end{align*} \end{align*}
Zeile 49: Zeile 50:
 <button size="xs" type="link" collapse="Loesung_5_2_1_1_Endergebnis">{{icon>eye}} Result</button><collapse id="Loesung_5_2_1_1_Endergebnis" collapsed="true"> <button size="xs" type="link" collapse="Loesung_5_2_1_1_Endergebnis">{{icon>eye}} Result</button><collapse id="Loesung_5_2_1_1_Endergebnis" collapsed="true">
 \begin{align*} \begin{align*}
-F_0 &= \sqrt{ (-2.18 ~N)^2 +  (-9.54 ~N)^2 } = 9.79 N \rightarrow 9.8 ~N \\+F_0 &= \sqrt{ (-9.54 ~\rm{N})^2 + (-2.18 ~\rm{N})^2} = 9.79 ~\rm{N\rightarrow 9.8 ~\rm{N\\
 \end{align*} \end{align*}
  \\  \\