Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
Beide Seiten der vorigen Revision Vorhergehende Überarbeitung Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
electrical_engineering_2:task_1.1.3_with_calc [2022/03/10 12:28] – ↷ Seitename wurde von electrical_engineering_2:task_5.1.3_with_calc auf electrical_engineering_2:task_1.1.3_with_calc geändert tfischer | electrical_engineering_2:task_1.1.3_with_calc [2024/03/12 23:51] (aktuell) – mexleadmin | ||
---|---|---|---|
Zeile 1: | Zeile 1: | ||
- | <panel type=" | + | <panel type=" |
<WRAP right> | <WRAP right> | ||
- | {{elektrotechnik_1: | + | {{drawio> |
</ | </ | ||
Given is an arrangement of electric charges located in a vacuum (see picture on the right). \\ | Given is an arrangement of electric charges located in a vacuum (see picture on the right). \\ | ||
The charges have the following values: | The charges have the following values: | ||
- | $Q_1=7 | + | $Q_1=7 |
- | $Q_2=5 | + | $Q_2=5 |
- | $Q_3=0 C$ (infinitely extended surface charge) | + | $Q_3=0 |
- | $\varepsilon_0=8.854\cdot 10^{-12} | + | $\varepsilon_0=8.854\cdot 10^{-12} |
1. calculate the magnitude of the force of $Q_2$ on $Q_1$, without the force effect of $Q_3$. | 1. calculate the magnitude of the force of $Q_2$ on $Q_1$, without the force effect of $Q_3$. | ||
Zeile 23: | Zeile 23: | ||
\begin{align*} | \begin{align*} | ||
F_C &= {{{1} \over {4\pi\cdot\varepsilon}} \cdot {{Q_1 \cdot Q_2} \over {r^2}}} \quad && | \text{with } r=\sqrt{\Delta x^2 + \Delta y^2} \\ | F_C &= {{{1} \over {4\pi\cdot\varepsilon}} \cdot {{Q_1 \cdot Q_2} \over {r^2}}} \quad && | \text{with } r=\sqrt{\Delta x^2 + \Delta y^2} \\ | ||
- | F_C &= {{{1} \over {4\pi\cdot\varepsilon}} \cdot {{Q_1 \cdot Q_2} \over {\Delta x^2 + \Delta y^2}}} \quad && | \text{Insert numerical values, read off distances: } \Delta x = 5dm, \Delta y = 3dm \\ | + | F_C &= {{{1} \over {4\pi\cdot\varepsilon}} \cdot {{Q_1 \cdot Q_2} \over {\Delta x^2 + \Delta y^2}}} \quad && | \text{Insert numerical values, read off distances: } \Delta x = 5~\rm{dm}, \Delta y = 3~\rm{dm} |
- | F_C &= {{{1} \over {4\pi\cdot 8,854\cdot 10^{-12} | + | F_C &= {{{1} \over {4\pi\cdot 8.854\cdot 10^{-12} |
\end{align*} | \end{align*} | ||
</ | </ | ||
Zeile 30: | Zeile 30: | ||
<button size=" | <button size=" | ||
\begin{align*} | \begin{align*} | ||
- | |\vec{F}_C| = 1.084 N \rightarrow 1.1 N | + | |\vec{F}_C| = 1.084 ~\rm{N} \rightarrow 1.1 ~\rm{N} |
\end{align*} | \end{align*} | ||
\\ | \\ | ||
Zeile 45: | Zeile 45: | ||
</ | </ | ||
- | Now let $Q_2=0$ and the surface charge $Q_3$ be designed in such a way that a homogeneous electric field with $E_3=100 kV/m$ results. \\ What force (magnitude) now results on $Q_1$? | + | Now let $Q_2=0$ and the surface charge $Q_3$ be designed in such a way that a homogeneous electric field with $E_3=100 |
<button size=" | <button size=" | ||
Zeile 54: | Zeile 54: | ||
\begin{align*} | \begin{align*} | ||
F_C &= E \cdot Q_1 \quad && | \text{Insert numerical values} \\ | F_C &= E \cdot Q_1 \quad && | \text{Insert numerical values} \\ | ||
- | F_C &= 100 \cdot 10^3 V/m \cdot 7 \cdot 10^{-6} C | + | F_C &= 100 \cdot 10^3 ~\rm{V/m} \cdot 7 \cdot 10^{-6} |
\end{align*} | \end{align*} | ||
</ | </ | ||
Zeile 60: | Zeile 60: | ||
<button size=" | <button size=" | ||
\begin{align*} | \begin{align*} | ||
- | | + | |
\end{align*} \\ | \end{align*} \\ | ||
</ | </ |