Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
electrical_engineering_2:polyphase_networks [2024/06/11 00:47] mexleadminelectrical_engineering_2:polyphase_networks [2024/11/17 10:30] (aktuell) – [7.2.2 Three-Phase System] mexleadmin
Zeile 367: Zeile 367:
  
   * Simple three-phase machines can be used for generation.   * Simple three-phase machines can be used for generation.
-  * Rotary field machines (e.g. synchronous motors or induction motors) can also be simply connected to a load, converting the electrical energy into mechanical energy.+  * Rotary field machines (e.g.synchronous or induction motors) can also be simply connected to a load, converting electrical energy into mechanical energy.
   * When a symmetrical load can be assumed, the energy flow is constant in time.   * When a symmetrical load can be assumed, the energy flow is constant in time.
   * For energy transport, the voltage can be up-transformed and thus the AC current, as well as the associated power loss (= waste heat), can be reduced.   * For energy transport, the voltage can be up-transformed and thus the AC current, as well as the associated power loss (= waste heat), can be reduced.
Zeile 383: Zeile 383:
 === Three-phase generator === === Three-phase generator ===
  
-  * The windings of a three-phase generator are called $\rm U$, $\rm V$, $\rm W$; the winding connections are correspondingly called: $\rm U1$, $\rm U2$, $\rm V1$, $\rm V2$, $\rm W1$, $\rm W2$ (see <imgref imageNo10>). \\ <WRAP> +  * The windings of a three-phase generator are called $\rm U$, $\rm V$, $\rm W$. \\ Often they are also colour-coded as red, yellow and blue - and consecutively sometimes also called $\rm R$, $\rm Y$, $\rm B$. 
 +  * The winding connections are correspondingly called: $\rm U1$, $\rm U2$, $\rm V1$, $\rm V2$, $\rm W1$, $\rm W2$ (see <imgref imageNo10>). \\ <WRAP> 
 <imgcaption imageNo10 | Motor Terminal></imgcaption> {{drawio>Motorterminal.svg}} </WRAP> <imgcaption imageNo10 | Motor Terminal></imgcaption> {{drawio>Motorterminal.svg}} </WRAP>
-  * The typical **winding connections**  in a three-phase generator are called **Delta connection** (for ring connection) and **Wye connection** (for star connection). This winding connection can simply be changed by reconnecting the motor terminal. In <imgref imageNo11> the two types of winding connections are shown. For the Wye connection, is often the star configuration shown, and for the Delta connection the ring configuration. For the Wye connection, it is also possible to have the star point on a separate terminal. <WRAP> +  * The typical **winding connections**  in a three-phase generator are called **Delta connection** (for ring connection) and **Wye connection** (for star connection). This winding connection can simply be changed by reconnecting the motor terminal. In <imgref imageNo11> the two types of winding connections are shown. For the Wye connection, it is often the star configuration shown, and for the Delta connection the ring configuration. For the Wye connection, having the star point on a separate terminal is also possible. <WRAP> 
 <imgcaption imageNo11 | Motor Terminal Setup for the two Connections></imgcaption> {{drawio>MotorterminalConnections.svg}} </WRAP> <imgcaption imageNo11 | Motor Terminal Setup for the two Connections></imgcaption> {{drawio>MotorterminalConnections.svg}} </WRAP>
   * The **phase voltages**  are given by: <WRAP>    * The **phase voltages**  are given by: <WRAP> 
Zeile 410: Zeile 411:
 The phase currents are given as the currents through a single line: $I_1$, $I_2$, $I_3$. \\  The phase currents are given as the currents through a single line: $I_1$, $I_2$, $I_3$. \\ 
 The potential of the star point is called **neutral** $\rm N$ </WRAP> The potential of the star point is called **neutral** $\rm N$ </WRAP>
-  * **Star-voltages** $U_\rm Y$ (alternatively: phase-to-neutral voltages, line-to-neutral voltages, in German: //Sternspannungen//): the voltages of the lines can be also measured or used referring to the neutral potential.+  * **Star Voltages** $U_\rm Y$ (alternatively: phase-to-neutral voltages, line-to-neutral voltages, in German: //Sternspannungen//): the voltages of the lines can be also measured or used referring to the neutral potential.
 <WRAP> <imgcaption imageNo13 | Example of an Three-Phase System></imgcaption> {{drawio>ExampleThreePhaseSystem.svg}} </WRAP> <WRAP> <imgcaption imageNo13 | Example of an Three-Phase System></imgcaption> {{drawio>ExampleThreePhaseSystem.svg}} </WRAP>
  
Zeile 433: Zeile 434:
 The phase voltage is therefore ${{1}\over{\sqrt{3}}} \cdot 400~\rm V \approx 230~\rm V$. The following two simulations show these voltages. The phase voltage is therefore ${{1}\over{\sqrt{3}}} \cdot 400~\rm V \approx 230~\rm V$. The following two simulations show these voltages.
  
-<WRAP>{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjCAMB0l5AWAnC1b0DYrQMwHYkcMM8AOJBDUnMPPLAJggThAFZJ2BTAWjDABQAJRA8GeBuCSSeOBpzDSo4dpzkZobFMrCa8kAhnUEE5YtjbDR4yQxai5nO5wWqQ6zdrXQwCMFoYMNhw2cgIcCwF5PGt7WiwxSFJwehAEEAANKINYpztrJJAGfPSATWyYsAw89PiiwvSAOQEAB3rksAZk+WTHFQhIVvdbfJ7wLv6oIbG+uSL8iAGKtIx04vTkRhKQZra2BHS+yjWFlUG9g-Hk4-nas6GQkY3V28nBgA8QahA8Nnaf67gZIABQAFgBDADOXAAOpCAGoAewANgAXcEAcy4kIEnxwpE4eAiphiqVqyQAyuiAE5wpFozHY5ZVGopRj2dIAVQAdgBjRHc7lcXmorgAEwELNybOsEhlTgU8CV8El1Wl61lT2U8nAyuVVjEcqlYlIHTVLjSFqtmgNNn+Ju6hQt9itkREYjY7M4HsYcqcuvg7GULhtAHdrJ6ivYfVJJIMWBEeCwFJ1RL5DkRlDgAPpgbOQbPvUhgSBijDZtj5nzZvjZhi5uD5utNksFwbhviXDV8CYawYYtNdyOdtZ+qYd9OvEdFSPtwcndKGrVz6ePArdU3j0R+LaLojdfIrydIBJjKWDABumqnZ-NKg4ww0WiQ2tgFBwSDYJYYH5on4iMCWFeS43oUXTJK4D4eM+ygID4poEJA8gIGQRhIJAfyAQIwF2t2+6vJBaiBJ4L7WpY0Rpr2+Q8CerxNMsSZVFOBwHhsIAADKCBR060T2yQEmkHEMAxk5rnx7hUIJ7E4MsZ5UbUqbpOxwkUTMOoajgmZKTJFFzH2dEcYI4Y3GwEyepwpkQQI4b4ZZKzpHZ5wSdctG2RMixTG0NwsfZ7Dufc4b8JIPneaYnnsGqyYRRZ-lLG0YybP8O5vNZ4CKbRCW0XOQWWgq1ysE5OU+UVtEeYVimsEVYVlcyilhZwIVCbVwVZWktHac1uWwawSlcTkOWOX5gLNOGCVMQlBWpZlWD4Yl2WpnZblWaNDSsOZXVzrN7VzHNqWhckX7BfVyxrhp6nbJxyz7LUZlqkVTUUddwwWWqmlYB1ABGDiSAJXQvvscYCF9OCFMWICrH8+wAQIQA noborder}} </WRAP>+<WRAP>{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjCAMB0l5AWAnC1b0DYrQMwHYkcMM8AOJBDUnMPPLAJggThAFZJ2BTAWjDABQAJRA8GeBuCSSeOBpzDSo4dpzkZobFMrCa8kAhnUEE5YtjbDR4yQxai5nO5wWqQ6zdrXQwCMFoYMNhw2cgIcCwF5PGt7WiwxSFJwehAEEAANKINYpztrJJAGfPSATWyYsAw89PiiwvSAOQEAB3rksAZk+WTHdxVIVvdbfJ7wLv6IQbaxvrki-IipirSMdOL05EYSkGa2tgR0vsp1xYGhg9qJk4Wj87aQkc2128moAQAPEGoQPDZ237JWrJAAKAAsAIYAZy4AB0oQA1AD2ABsAC4QgDmXChn3cpE4eAiphiqWBIAAyhiAE7w5HorE4lZVGopRj2dIAVQAdgBjJHc7lcXlorgAEwELNybOsEhlTgU8CV8El1WlG1lT2U8nAyuVVjEcqlYlIHTVLjSFqtmgNNgBJu6hQt9itkREYjY7M4HsYcqcuvg7GULhtAHdrJ6ivYfVJJIMWBEeCwFJ1RL4jkRlDgAPpgbOQbMfUhgSBijDZtj5nzZvjZhi5uD5utNksFwbhviHV58CYawaYtNdhiRzvrP3vDvp7tT4dYduD07pQ1a+ej9xsGRjLrJVd+bZLojdfKrqdIBJjKWDABumu7F-NKg4ww0WiQ2tgFBwSDYJYYX5o34RDAlg3sud6FNuOhuB4r7KAgPimgQkDyAgZBGEgkD-MBAigXaGqyFQryuE+MFeMGNrRGmvb5DwZ6vE0KxJlU3aHEemwgAAMoIlFrnRPbJASaScQwjFTo8VG9IR6QcTgKwXtRtSptJImUbMOoajgmbSbJlHzH29GcYI4Y3BuySepwpkTu4hGWSZEzTNZQJ0Ye7ATEs7xtDcrGrOklnufO-CSN5XmmB57Bqsm4UWW59wAlscXMf5AjhoFaR0WM8UBUprAZawDmpd5BXObFBWsAVoVJZR5U7mkoXKcySl0Zw8XaQ1QV5ZazWGW1rk1bZuzJQljANHlg0Zc5UlNYNqV+TZ9ljSNFkRaN4YuS18yZYNIVmUpoWDLpG6vH0GrSdxOSXOMZlqgVwkrBdfTme4WmcbJABGDiSIJXRvgccYCO9OCFMWIBrP8BxAQIQA noborder}} </WRAP>
  
-<WRAP >{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjCAMB0l5AWAnC1b0DYrQMwHYkcMM8AOJBDUnMPPLAJggThAFZJ2BTAWjDABQADxDUQeNiAaRS42QnCyACgAsAhgGcuAHQ0A1APYAbAC5qA5lw3CQOUpzw4QCUnnFYFYWQGUzAJ11DUwsrAQB3ED4EBQYGBT4GWViFSAFzSLBoqTYsKJi8BigocIys5NKYnOKIvKk4yIYCupSS2pw2Qp5pJNJZVJqEMEZ6niIk+v6KkCRc7vAMTlSANwam8q6ZecXwdk4cBgxoNhQihlgKHCQ2MEgGS5orpxg2ARWutZG5xL6djlsDo4nTgIaBeVxIW6IMgYS6QSTPV6rQrrMbNIoQP77Q7HJBFRZHATSNwJcbxGZohQAOUJkGJg2G8WipOcIAAMoIiVNySTRMC2QwacTMgp2p0wIlbFQWaycCVKDFeuwFlJFZNUd9nBgFX0BAAHSVJKrqxUQCCpfXyqSbS0a03VcDiq3yLVO4r6nKcIacD0q2R282uhhVOa0LD+kr8ZHBzZBrCTSNbV1et0O5GbBOxnZmvWpxMZ9M7VKc-M-OYKVkC4uOzOcTPl2VVwrJz3K8sc2m5jW1xVUkoh+hJ5WTL5GqU1iPVxXGnUREPKn3NkrqqoIfbZONyl1za5pnUGKQeU6IVwgLX4s22bKnQqcVSaHT6YxmSwCfdeFm149YM-YO1OMC4rWF6+GoASPsEljWEAA noborder}} </WRAP>+<WRAP >{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjCAMB0l5AWAnC1b0DYrQMwHYkcMM8AOJBDUnMPPLAJggThAFZJ2BTAWjDABQADxDUQeNiAaRS42QnCyACgAsAhgGcuAHQ0A1APYAbAC5qA5lw3CQOUpzw4QCUnnFYFYWQGUzAJ11DUwsrAQB3ED4EBQYGBT4GWViFSAFzSLBoqTYsKJi8BigocIys5NKYnOKIvKk4yIYCupSS2pw2Qp5pJNJZVJqEMEZ6niIk+v6KkCRc7vAMTlSANwam8q6ZecXwdk4cBgxoNhQihlgKHCQ2MEgGS5orpxg2ARWutZG5xL6djlsDo4nTgIaBeVxIW6IMgYS6QSTPV6rQrrMbNIoQP77Q7HJBFRZHATSNwJcbxGZohQAOUJkGJg2G8WipOcIAAMoIiVNySTRMC2QwacTMgp2p0wIlbFQWaycCVKDFeuwFlJFZNUd9nBgFX0BAAHSVJKrqxVOCCpfXyqSbS0a03VcDiq3yLVO4r6nKcIacD0q2R282uhhVOa0LD+kr8ZHBzZBrCTSNbV1et0O5GbBOx2w7AMJ5MZzbhzn5n5zBSsgVFx2ZziZsuyyuFZOe5Vljm01O+06KqklEP0JPKyZfI1S6sRqsm0eq3vp5U+psldVVBD7bJxuUuubXNM6gxSDynRCuEBa-FmrNB06FTiqTQ6fTGMyWAR7rwsmtHrCn7AQCCm3E1uevhqAED7BJY1hAA noborder}} </WRAP>
  
 ==== 7.2.3 Load and Power in Three-Phase Systems ==== ==== 7.2.3 Load and Power in Three-Phase Systems ====
Zeile 466: Zeile 467:
 </panel> </panel>
  
-<WRAP>{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgzCAMB0l5AWAnC1b0DYrTAdiWBhrgBxIIYlgCMuuWATNSAnCAKyQcCmAtNdQBQADxC8M1JCAFTeyBNIYMW0kiAAKACwCGAZ24AdXQDUA9gBsALtoDm3XSLEMkWakrHUyi9is8gAytYATkZmVrb2gjZiGAhqYAgK4nHgGFzpggDuTikJSQxgynlQWU6x4Ik58ZWQggAOToXgbo1FlczMtQ28DCkFyj19LtIjtdm87EjK-WKEXDNdZQqe+eW9ah0l3ciMJFxywwyQG6OlE1MgDHtiO5fXY2KTyis3wy+L59Mpn3dcmx9PS5sH4zf6CI64GJ9JrJNRHNQKAAyDHBkEhsN+ULh7CwSLAqPRsQ2JCSROkaRUiKEEKxFVJuSOKgAcmdbvDXq4SSVxmzrrwwOxpvczmTivzBXSSgAlWkvcRvLl-DhcQoYaCUBTpbDsQQyjEzeWMJpKzjgBhqjVQJywchgJDsaiQAoESTsCAwHV6slXfYYQ73Eam1XqxU3aCeEj4J2IUgYO2QHwekUpOWA97JuEwwELDOYkHC8bmhTrJaSh6DOHDCtls5F1RJa7pwvQ5SZ5TlmY+kAkOEF1qS3jXYq1IJia69faN0OOwSjtvdu5qLg6gDGC6uanijPSsHg6H36A8vRDhAwVztTFw7iOI+7va4PbNWqOgnMY-mrHfi6tMDgzBo6rmngLikLgFBIIg3Jfi8bjEpqpTzrBlzGgh96KGh5ZDpU1TwdkOF3jWeH4Uhw6CHg+xzMhAyFIhIxCOMNFUVUTG1ORswUnKjEwXRrIKkklFNrMVz1qW6ZseKQoUcJXabPRQloT0TRdqxuCTiqjKDiq7Q8eJjFigKbTLDxDHCWKdakeMQ4aeOj4qQ+T4LsUslkapBGFA+xE8aIcgUIoUkdAUvhqFoeiGLoADCACuQRBNwAB2lgON5JA+G4ECeOllBBSAiKmNoAAmRgAJZxUYADqACeYXhaYcVxdwK6WEVtVGAYBhxSVAAqmixXwIX6EYABipjRbwZVFbFRj+BVuiWNwAC2bVxZkRWWJoU2WEEJU2EYUUxfFiWOHIkAdBgPj8m8WXLGoACSR12qluAQPyj60Li0jLPdBCXO4L2MAwPjLMWX1SEw-HkJctDZXd3l2pC5rnRelxXaoIAw7MSDMAwT2zFy2PvdQCj4rDSCQoU6JI2AYBcNdaNff+Aq4wzCIfSALLeTS7keBBZoQED4Ds04vTNM9TBFNQBNqAAqkdSjYgMTCMOwgOozLHMCJckzc8WZ6+MWgs9C0TD7K6kN86z1AG0ooOQKLUNHJLIAy4WTQ0ArSl9iCwJpoqZzZt82Yod57ApUCSTsDjNK02rjxZUwzATG6kMKPzbhHTi2LosrEDmjTrMFOnocA-sEc50n0dHQgYE-bICBazM-M0JXmM-QMVegwD2Uy6Y0jm-MiCRiAsQ7p04CKFaUhcP1YVhNYdiCD3Kv93EWDD9gmwQFg9lcIE2ghCYFhz5EPe+ZqLCQKTQ+fg60DTAuvl82flR85PLBSBAErLkUGg6ANEXRbFBKDggA noborder}} </WRAP>+<WRAP>{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgzCAMB0l5AWAnC1b0DYrTAdiWBhrgBxIIYlgCMuuWATNSAnCAKyQcCmAtNdQBQADxC8M1JCAFTeyBNIYMW0kiAAKACwCGAZ24AdXQDUA9gBsALtoDm3XSLEMkWakrHUyi9is8gAytYATkZmVrb2gjZiGAhqYAgK4nHgGFzpggDuTikJSQxgynlQWU6x4Ik58ZWQggAOToXgbo1FlRDMtQ28DCkFyj19LuDSJdm87EjK-WKEXDNdZQqe+eW98aOLcsMMJFzbjJAbnaUTUyC7+8iMe2Nik8orYteqClsPFyln07cdJd0fBhsb4XJp-WpA3AxPpNZJqIFqBQAGQYgkh0PhtzhF3YWGRYDRkCh2KeJLSKiRQnR2OKNKBKgAcqcXgjnsMnrVxiysWB2D8MuNYtUkry2m9BAAlDGvGLskhvUaccAMDDQSgK9LQdiS6UzcQ7JpcZhKwqq9VQJywchgJDsaiQAoESTsCAwbVS7GXWU3dKKrimtXyi1yaCeEj4B2IUgYG2QHxu05CmUgjmJmEDQGGtOY-aA26cpafNQ9crFAuDeHDCsVcXjFXLIO8W6puvpkDwrN1ppekg5u49MGVJv+mqCIJiW69fbNoNG2rjjvKTFqLjagDG7Yuvc3hV9MHgkHQR-QHl6gcIGF2NqYuHcQPn7b7293FqBgnME-mrE-W5X2DgzA0GqKp4C4pC4BQSCIP2M7LLsMoFouihIYhfZuH25a-JUwp3Dhz6jtk+FwThtR4PscyggMhRIcwtGnNRlFVIxpG4OR5KkgxTy0dIzJyiK7GzvR8GkvWCGCGRsx8lu5HwV63FCOMDFegO-IlBJw7KtOI7LKMQjqQxtKijWuk8Yp8G0qJZanL89IabsK7iaxO70jh8mOVwz4ua5umOHIFCKDJtEFL4ahaHohi6AAwgArkEQTcAAdpYDiiE2PhuB0VDSJQIUgEipjaAAJkYACWCVGAA6gAnhFkWmAlCXcGulglfVRgGAYCVlQAKpo8V8GF+hGAAYqYsW8BVJXxUY-hVboljcAAth1CWZCVliaDNlhBGVNhGDFcWJclvmsLRGA+LwNquDlDYgAAkr5NrpbgECXdutB4tIyyPQQFzuG9jAMD4ywKKiqU2lITAiuQFy0LlD3g0gUIqhd14XDdqj3T9zAMC9sxBrjn3UAoBKI1ChTEmjYBgFwt0I7MSCAby+NM4iX0gEyqXoi+-BQcqEAg+AnNOL0zSvUwRTUETagAKq+Uo8JST0Us4sDmNy1zAg4rIkig5evig8LyvTPaHi2rDAvs9QRtKJDkDi3DQLSyActdpLAwzF65aAsCHwtvc5zrAH0xZql7AkD4QJJOwePordGv3DlTDMBMLqwwogtuL5uKK8S7BpyqtPswU2cRziuax2n8cnRBf2yAgkyMYLNAnYzf0DAg+B-Wrfhy6Y0iW-MiDhiAsSap0IwtFwUhcINEVhNYdiCP3atD3EWBj9g3EQFgHkWoE2ghCYFiL5E-f+QqrBI6P352tA0ybv5AuXyTLAz2-IxSauRQaDoQ1RbFeKSUHBAA noborder}} </WRAP>
  
 <callout title="Voltages - Currents - True Power - Apparent and Reactive Power"> <callout title="Voltages - Currents - True Power - Apparent and Reactive Power">
Zeile 540: Zeile 541:
  
 In the case of a symmetric load, the situation and the formulas get much simpler: In the case of a symmetric load, the situation and the formulas get much simpler:
-  - The **phase-voltages** $U_\rm L$ and star-voltages $U_{\rm Y} = U_{\rm S}$ are equal to the asymmetric load: $U_{\rm L} = \sqrt{3}\cdot U_{\rm S}$.+  - The **phase-voltages** $U_\rm L$ and star-voltages $U_{\rm Y} = U_{\rm S}$ are related by: $U_{\rm L} = \sqrt{3}\cdot U_{\rm S}$ (equal to the asymmetric load).
   - For equal impedances the absolute value of all **phase currents** $I_x$ are the same: $|\underline{I}_x|= |\underline{I}_{\rm S}| = \left|{{\underline{U}_{\rm S}}\over{\underline{Z}_{\rm S}^\phantom{O}}} \right|$. \\ Since the phase currents have the same absolute value and have the same $\varphi$, they will add up to zero. Therefore there is no current on the neutral line: $I_{\rm N} =0$   - For equal impedances the absolute value of all **phase currents** $I_x$ are the same: $|\underline{I}_x|= |\underline{I}_{\rm S}| = \left|{{\underline{U}_{\rm S}}\over{\underline{Z}_{\rm S}^\phantom{O}}} \right|$. \\ Since the phase currents have the same absolute value and have the same $\varphi$, they will add up to zero. Therefore there is no current on the neutral line: $I_{\rm N} =0$
   - The **true power** is three times the true power of a single phase: $P = 3 \cdot U_{\rm S} I_{\rm S} \cdot \cos \varphi$. \\ Based on the line voltages $U_{\rm L}$, the formula is $P = \sqrt{3} \cdot U_{\rm L} I_{\rm S} \cdot \cos \varphi$   - The **true power** is three times the true power of a single phase: $P = 3 \cdot U_{\rm S} I_{\rm S} \cdot \cos \varphi$. \\ Based on the line voltages $U_{\rm L}$, the formula is $P = \sqrt{3} \cdot U_{\rm L} I_{\rm S} \cdot \cos \varphi$
   - The **(collective) apparent power** - given the formula above - is: $S_\Sigma = \sqrt{3}\cdot U_{\rm S} \cdot \sqrt{3\cdot I_{\rm S}^2} = 3 \cdot U_{\rm S} I_{\rm S}$. \\ This corresponds to three times the apparent power of a single phase.   - The **(collective) apparent power** - given the formula above - is: $S_\Sigma = \sqrt{3}\cdot U_{\rm S} \cdot \sqrt{3\cdot I_{\rm S}^2} = 3 \cdot U_{\rm S} I_{\rm S}$. \\ This corresponds to three times the apparent power of a single phase.
-  - The **reactive power** leads to:  $Q_\Sigma = \sqrt{S_\Sigma^2 - P^2} = 3 \cdot U_{\rm S} I_{\rm S} \cdot \sin (\varphi)$.+  - The **reactive power** leads to:  $Q_\Sigma = \sqrt{S_\Sigma^2 - P^2} = 3 \cdot U_{\rm S} I_{\rm S} \cdot \sin \varphi$.
 </callout> </callout>
  
Zeile 565: Zeile 566:
 </panel> </panel>
  
-<WRAP>{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgzCAMB0l5AWAnC1b0DYrTAdiWBhrgBxIIYlgCMuuWATNSAnCAKyQcCmAtNdQBQADxC8M1JCAFTeyBNIYMW0kiAAKACwCGAZ24AdXQDUA9gBsALtoDm3XSLEll1JSFxdX7FdTUAZU20AEyMAZWsAJyMzK1t7QRsxDAQ1MAQFcRTwDC5cwQB3MXYsNIzWcHSoArFcZVKiksrIQQAHMXKaZTkueuZmZrbeYpAGMC7hhiQsPqrCoaRlUa7CLiWqwdrVDM2GLJmB9qmRki45I4ZINX3q+cWTw8Z75rn2Ba2H94PbkazvhnvroNXos2H8xtIIc0Lrgklk1pk1Bc1Ao-AxBNDYYj7giRsMUWB0ZAYTjfBlklccio-EIMTj6nSLioAHI3ZCMS4fUmzD7-U5gdh3PJzckVDL8upNQQAJUx73ERy5ng4PQYGGglAUuWw7GlsvhGHO4KVnHAqvVJE1YgYsHIYCQ7GokFGBEk7AgMB1MpxvKS5yeEJNYzVGqg7WgvhI+CdiFIGDtkG8HpuIq530Vybh4LBymeeuxwOOQpqi1+m3quaGjCOldF3N4my5AhcFrrE3BF1WRtZq3uPp9zQi0lcP08w8V0gHIzYaw7xzUXB1AGMpz3EWwxlqYPBIOhd+h2mAwNBIydHUhEETcOwFB3BIO+737hvQxdBOYhyXR3d59g4H1qDgSCkKweDsCeYGatUTbvM+6aFLOazPmsuYPiqPZFtB9SzuW1TYZUPo4fBT6VM+OF4HylLwmMiLgjMQhzNQhAjFmbY5oI5FiCscrUe8dGsgqLa8FxcFiIx0yCQ2LbNBxQkCoWnH-PJfEMUxPrdPJ0keB+ppfrWfEyTx9LinpEL0dpsHDv887sVp2GMnhCj6bZT72cRjmmY4cgUIofJMIoECOWoWh6IYugAMIAK4RBE3AAHaWA4oiOjCrgQGAJDeNQlA+P4gQhLoACWsVGAA6gAnqFYWmLFsXcIulgFdVRgGAYsVFQAKpoMV8MF+hGJ13W8CVBUxWEZW6JY3AALYtbF+QFZYmhhJYERFTYRiRdFcUJZ5rB9Bg3hCQq2WBSAACSnl2pluAQEJJBXPQPiOZdBAjG4d2MAw3iOTeL1SEwYrkCMtA5edL0wqqh12osJ2qGDohHcwDA3ZxLbI1gP3gODprEtD4BgFwp0XQjdrMIeUMkGT6VPSALII9Q3hIaaAXSAoYChJddSMVaPRZaDACql2MHJvC7Li31w4L9P-a8VojBgyiYwwHMI-ZjqccDLPUI5KucRDkC3V9U4Y5L3bgMO6n9jcBazmmUnW28uxqNmVQI2B3gXBk7Aoxip1Sw0iICEUbrAwomOuJ5xSIt7wcQKqhOs8xkcZbipze3HId+7tuA3pM7Sy2smM0LtSBI+9CD4G9Eu+CAgu6KJj30phTQQgAZto5j6J52upO9YmmtXagc3MHSVM3kEMcO9JlpKcyIZU-CN7PVrgp0K+Cq7Vp5xchsgxcJs1-7ouWer-D2prNPUHTVpB19siSDeCs0ww1+i4pX1dEwwuD7XnlKGz3Nj5cwPmoI+GJnxnxVFrNmLI5iGQXqqNmy8hLv2xDOJ4NweKpkQZ8TB78sxO2YmxOe7ZsT9ytnPTMXRyFdjnskOU-cRKizhNWQhhErT0MIaLehOFBg4OwZwvYkJWhWioaIxECphF8NXhbee7l+g3BwfSNhyCVEZDkZvUWCo+41y8KDJk3BLD5FMBEAA1stbQUQTAWGsHYBwGw6iCVoCUFs1w5hlgkhKCe69wCCQ0c0VWSBUhEFEWlA0oNaoRRWh3TylJCCZSkIQZEcNwiWKMOoUwRVLA3Gcb49Rq97bS0Zo9ReJRK6Y1CK-JgdRwmi3XJsLOphpAs1WIgSMIBki5HDKGCAw4uBSC4L1UKMRbHcEEE0iWrSUhYE6dgGYEAsBcB-KkqxIy4gOCaQgSZLAdwwlmQ6aAiwQDIkZiwd0ZzwAsB-FkCADpQx3IgEMjaUUYrxQcEAA noborder}} </WRAP>+<WRAP>{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgzCAMB0l5AWAnC1b0DYrTAdiWBhrgBxIIYlgCMuuWATNSAnCAKyQcCmAtNdQBQADxC8M1JCAFTeyBNIYMW0kiAAKACwCGAZ24AdXQDUA9gBsALtoDm3XSLEll1JSFxdX7FdTUAZU20AEyMAZWsAJyMzK1t7QRsxDAQ1MAQFcRTwDC5cwQB3MXYsNIzWcHSoArFcZVKiksrIQQAHMXKaZTkueohmZrbeYpAGMC7hhiQS6SrCoaRlUa7CLiWqwdrVDM2GLL719qmRki45I4ZIVJnmufYF49PkRhPZovvfMqOPg-nFrN+HuBrq03os2AC1vtmhdcEksmtMmoLmoFH4GIIYXCkS9ESNhqiwBjILDcd9STkVH4hJjcfVaRcVAA5apnRiXQ5Yb43DmA3hgdiLF7c2mVPkCioKZoAJSxWySXxIkpmnHADAw0EoSty0HYghluIRGHOYygyp6ao1itNvAYsHIYCQ7GokFGBEk7AgMF1+uS2NORueuTNqvVmutCGgvhI+BdiFIGAdkG8XpZvrlAK5qfhJohJuFaYYOLugrycx2-029WFEyOQ0akpZm2+AhcVurjBNF1WeZZ5ULqxe-aqEWkrhG5Rbcs8zRHXZGnbYhbUXF1AGMRouSEi2GMgzB4JB0Ef0O0wGBoNGTs6kIhibh2Aou4JZ4PX+agxdBOZR39PGOl6a+6QMwAg4EgpCsHg7CXtBDaFJO3y7lO1RzpCDJrNyQ5DkhQ7cpO9RzlWKE7pU2FNChLy9AyRF4KcKzzsshYMTMIEstQhDMXWzHNLRYj0WSYxqM2LG9gqGT8W2bEcWSTaSbxYolnxTFDiB0hSYG7QDnkvH4Qy+GVKpQjyYJEp8eK9SGdUul-oKy6CLxhHoSRCiWQ5lHoZRBkiaIcgUIodFMIoEAuWoWh6IYugAMIAK4RBE3AAHaWA4ojOrCrgQGAJDeNQlA+P4gQhLoACWCVGAA6gAnhFkWmAlCXcKuljFXVRgGAYCWlQAKpo8V8GF+hGD1fW8OVxXxWElW6JY3AALbtQl+TFZYmhhJYESlTYRgxXFiXJY43QgRg3h8l8eUhSAACSB0OjluAQHyW7SPQPguTdBAjG4j2MAw3guY+71SEw4nkCMtD5Vd72wmqJ0Oos52qJDPkOswDD3XxVpo1g-3gFDqoknD4BgFwF3XcjSDMGesMkJTWWvSAzI+dQ3g4aqwXSAoYChDddTsWI1G5RDACqN2MOKNqPuwf2IyLTNA3c-MjBgyg4ww3M+ehzp8WD7PUC56t8dDkAPb9G7YzLvY9GO3SAtW9xzhmkm3Pb-zFtxB3Qd4FwZOw6OYhdssNEiAhFB6YMKDjrge3lv0klLEBqiTHPzh72V4qcvsJ2HAcHQguCPpM7QK2sOM0LnFOfV0edA6bOe6GItD1g3Y5VjMABm2jmPoB166kX3sSUteI9zcwdAZLfkXM+nbHUk-8yadKN6ZwqQtbay4QdShA8b-Pgxc5u+CAgc2v+Wv8I6Ov09QjO76jCvn4+yv0wwN82sp4tMGL0uH8fSic3zJ9eYHzUL-YkqpTiSHNLrTmzI5gmTpGqTmc8+TKRxOvIULITJkkQchOBykcy7CRD2OY6CIEcQ3iQ7MXQB7uxIckdMNDMyUKRLWQhy8WQ4LYTaehRFBg4OwfQthUIQQSyIV0Nhkxpj9BEavcRC9KjCLoUgjIQjkGqJUfIhsGsvj90Pl4CGjJuCWHyKYCIABrNa2gogmAsNYOwDgNh1CtPwF6WVObAjLE4me7CSEL2cZCci2jUhEH5ggTKRoIYNWiutTuB0KSEBylIQgKJh6RCMOoUwpVLBsVcf4vxWiG4XzwFgFxJR8D01CK-JgdQIk2h3JsHOphpDs1WIgaMIBkjan6ECMcXApBcAGhFGIdjuCCCadLVpKQsCdOwKpCAWAuDLhAOEKx0RbFxAcE0hAEyWCHlhDMp00BFggBRCzFgnpzlAiyCTK4TpTR3IgIM7asV4pJQcEAA noborder}} </WRAP>
  
 <callout title="Voltages - Currents - True Power - Apparent and Reactive Power"> <callout title="Voltages - Currents - True Power - Apparent and Reactive Power">
Zeile 710: Zeile 711:
 </panel> </panel>
  
-<WRAP>{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgzCAMB0l5AWAnC1b0DYrTAdiWBhrgBxIIYlgCMuuWATNSAnCAKyQcCmAtNdQBQADxC8M1JCAFTeyBNIYMW0kiAAKACwCGAZ24AdXQDUA9gBsALtoDm3XSLEMkWakrHUyi9is8gAytYATkZmVrb2gjZiGAhqYAgK4nHgGFzpggDuTikJSQxgynlQWU6x4Ik58ZWQggAOToXgbo1FlczMtQ28DCkFyj19LtIjtdm87EjK-WKEXDNdZQqe+eW9ah0l3ciMJFxywwyQG6OlE1MgDHtiO5fXY2KTyis3wy+L59Mpn3dcmx9PS5sH4zf6CI64GJ9JrJNRHNQKAAyDHBkEhsN+ULh7CwSLAqPRsQ2JCSROkaRUiKEEKxFVJuSOKgAcmdbvDXq4SSVxmzrrwwOxpvczmTivzBXSSgAlWkvcRvLl-DhcQoYaCUBTpbDsQQyjEzeWMJpKzjgBhqjVQJywchgJDsaiQAoESTsCAwHV6slXfYYQ73Eam1XqxU3aCeEj4J2IUgYO2QHwekUpOWA97JuEwwELDOYkHC8bmhTrJaSh6DOHDCtls5F1RJa7pwvQgYCabG2tNH05TG1IJia69faN0OOwT9zPKOEkNRcHUAYxA07U8UZ6Vg8HQW-QTiYOAQOITaATuAgPTg46X064M7NWqOgnMA-mrGfd1n2DgzHYCGgUwYpDUHGCQCqQ3Jvi81DtIqpSTuScEPLe3ZAde4GDKkN4YeBUHLFyKH1uBt5zNIlTEbUeD7MRBqFHBmxCOMNGXDCJY5hRswUnKjGQSM9EcgR-IcTBDFXPxdbpmx4pCpRInITxZyMd2PRdsKEnXGAhBvsRdGCBJjFigKbTLHJwnVKsCjFOWakabwg63uRuCYepWDxBxclsURGlEa5HSOHIFCKNJHQFL4ahaHohi6AAwgArkEQTcAAdpYDiiDZPhuBAbjPAgkK4SAiKmNoAAmRgAJYJUYAAi3DhEYkWmAlCXcPOlilQ1RgGAYCWZKVliaEYgRBOVNh1bF8VJSlNyQB0GA+PybyUCFIAAJK+Xa6WnrMt60LiJHSGtBCXO4-IkIwDA+MsxYHVITBJHaxa0Etq2pXakLmnNdrTIteXPbMSDMABZ5gFyAG7VB4AHZChTop94BgFwP0Hcw6kfSQyPA74CgsqlNKFPskgqsFl3gNju7mdQZ5MEUQFLQAqr5SjYgMTCMOwF2qCA9M4wIlyTB45CXBgyjEwwpM9C0TD4-alwU5j0hi0oN2QJTj1HGDaj04WTQ0MzykZOM2bAmmQmPBcJYgh2qXsCQPhHEk7CbTSeVc48i1MMwExujLCjE24vk4ti6JsxA5oI3tBT+zbvP7A7Ide87vk5cWzg3HzMzEzQif-UdAw5Td5102cakUvwLRkWcbZYaX7bKOWvRV-X3blpXMwIbWxbXEhBYkbhl3mRStSpbNcNqBMKoIMwvsoqluDo76WDqRAiOiNQPiL0CcPqytjhMBUyML5UIv4tkq6ORpiHxJ5p8lKIKBw8siBw7lHO-Y6a8IM8jIJOz4OZ6Y0hLytHbSMIBYjrk6OARQVopBcDCvoUIFhrB2EEP-dm8xECnVAa+GAmwIBYEwlwQI2gQgmEQREBw-8DwqARpAJAkIwFAl-HCJcLA14sHdOwyBKQEbxA4BAh0kC4ERRinFRKyVBBAA noborder}} </WRAP>+<WRAP>{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgzCAMB0l5AWAnC1b0DYrTAdiWBhrgBxIIYlgCMuuWATNSAnCAKyQcCmAtNdQBQADxC8M1JCAFTeyBNIYMW0kiAAKACwCGAZ24AdXQDUA9gBsALtoDm3XSLEMkWakrHUyi9is8gAytYATkZmVrb2gjZiGAhqYAgK4nHgGFzpggDuTikJSQxgynlQWU6x4Ik58ZWQggAOToXgbo1FlRDMtQ28DCkFyj19LuDSJdm87EjK-WKEXDNdZQqe+eW98aOLcsMMJFzbjJAbnaUTUyC7+8iMe2Nik8orYteqClsPFyln07cdJd0fBhsb4XJp-WpA3AxPpNZJqIFqBQAGQYgkh0PhtzhF3YWGRYDRkCh2KeJLSKiRQnR2OKNKBKgAcqcXgjnsMnrVxiysWB2D8MuNYtUkry2m9BAAlDGvGLskhvUaccAMDDQSgK9LQdiS6UzcQ7JpcZhKwqq9VQJywchgJDsaiQAoESTsCAwbVS7GXWU3dKKrimtXyi1yaCeEj4B2IUgYG2QHxu05CmUgjmJmEDQGGtOY-aA26cpafNQ9crFAuDeHDCsVcXjFXLIO8W6puvpjwtBanGZewYXfOCIJiW69fbNoNG2qD+FNTFqLjagDGIFny+Vvpg8Eg6G36CcTBwCFxcbQcdwEB6cAHy5z17XFqBgnMQ-mrGffbn2DgxoQ0CmDFI1AxgkvKkHcTZGkG1CVC2q4zIB07KAWJA3vBfYCjkqRcPE5IFlBDbLJQMpIdhRrtDhgh4PscyggMhQIaMzBCOMdE0VUrG1JRszkqSLFPIx0jMnKIrceOpy8Y29ZERRuBUXyaGzLs8n8UxCk3j0TRehxMlvmAhA6dxDHSVRim0qKNYMQJzEmZUJYKGWpy-Hp4HviUnHxHpJEWUIbnuVgyGYV5jhyBQijGYxBS+GoWh6IYugAMIAK5BEE3AAHaWA4ohNj4bgdO4UFQg2IBIqY2gACZGAAlqlRgACLcOERhxaYqWpdwC6WJVLVGAYBipZklWWJoRiBEE1U2E1SUpelmXPJAjEYD4vA2q4hFFQAkkFNo5Wesz+bQeLSMsW0EBc7jLSQjAMD4ywKKiWU2lITAiuQFy0JFICbQ9SBQiqS02tMa2qJ9J3MP+55gEG-6HVB4AnVChTEgD4BgFwG2gyj-0kMwumIkdIBMll6KFPskj+hFt3gITe52dQ55MEUgEfQAqkFSjwnJPRM9dN3A6zRMCDisiSHdGDKJTDDU1z0z2h4tpvRAlPUFLShPZA9PvUCMNqKzdZgi06n8mBgLAh8MEgus9znJ2WXsCQPhAkk7C7eiRX8-chFMMwEwum9ChK-dHsc8S7C+yqaP4wUQV2w7SoTC7vtu0FCC4HdzjPJMrGUzQydIGD50p0910sw5-rkvwLTUeWAhFOXNfsV2dnl708nVx2M4N628n+ZppR4TK-dV0Fi0o8WJoIMwAdBbgOOozEWC6YrwNfdIPiLxc-p6ejohMBUOML5UEsEtk8T0r5dz+bpfmnxkogoCjyyICjhXL449prwgjz0gkvOwznpjSCXvMRA4YQCxE1J0EYLQuBSC4NFfQoQLDWDsIIABvNgFxCwOA7A-EIBYCwhaQI2gQgmCQREBwADDwqDRluKE2DHbQHhKuKhitXQsAgIrD8uQOCQLtCMeBsVErJTShlQQQA noborder}} </WRAP>
  
 <callout title="Voltages - Currents - True Power - Apparent and Reactive Power"> <callout title="Voltages - Currents - True Power - Apparent and Reactive Power">
Zeile 851: Zeile 852:
 A passive component is fed by a sinusoidal AC voltage with the RMS value $U=230~\rm V$ and $f=50.0~\rm Hz$. The RMS current on this component is $I=5.00~\rm A$ with a phase angle of $\varphi=+60°$. A passive component is fed by a sinusoidal AC voltage with the RMS value $U=230~\rm V$ and $f=50.0~\rm Hz$. The RMS current on this component is $I=5.00~\rm A$ with a phase angle of $\varphi=+60°$.
  
-1. Draw the equivalent circuits based on a series and on a parallel circuit. \\+1. Draw the equivalent circuits based on a series and a parallel circuit. \\
  
 #@HiddenBegin_HTML~71111,Result~@# #@HiddenBegin_HTML~71111,Result~@#
Zeile 976: Zeile 977:
 apparent power: apparent power:
 \begin{align*}  \begin{align*} 
-&= U \cdot I \\+&= U \cdot I \\
   &= 230{~\rm V} \cdot 5{~\rm A}  \\   &= 230{~\rm V} \cdot 5{~\rm A}  \\
   &= 1150 {~\rm VA}   &= 1150 {~\rm VA}
Zeile 988: Zeile 989:
 A magnetic coil shows at a frequency of $f=50.0 {~\rm Hz}$ the voltage of $U=115{~\rm V}$ and the current $I=2.60{~\rm A}$ with a power factor of $\cos \varphi = 0.30$ A magnetic coil shows at a frequency of $f=50.0 {~\rm Hz}$ the voltage of $U=115{~\rm V}$ and the current $I=2.60{~\rm A}$ with a power factor of $\cos \varphi = 0.30$
  
-  - Calculate the real power, the reactive power, and the apparent power .+  - Calculate the real power, the reactive power, and the apparent power.
   - Draw the equivalent parallel circuit. Calculate the active and reactive part of the current.   - Draw the equivalent parallel circuit. Calculate the active and reactive part of the current.
   - Draw the equivalent series circuit. Calculate the ohmic and inductive impedance and the value of the inductivity.   - Draw the equivalent series circuit. Calculate the ohmic and inductive impedance and the value of the inductivity.
Zeile 1072: Zeile 1073:
 <button size="xs" type="link" collapse="Loesung_7_1_3_1_Rechnung">{{icon>eye}} Result for 1.</button><collapse id="Loesung_7_1_3_1_Rechnung" collapsed="true">  <button size="xs" type="link" collapse="Loesung_7_1_3_1_Rechnung">{{icon>eye}} Result for 1.</button><collapse id="Loesung_7_1_3_1_Rechnung" collapsed="true"> 
  
-The active power is $P = 1.80 kW$. \\ +The active power is $P = 1.80 ~\rm kW$. \\ \\ 
-The apparent power is $S = U \cdot I = 220V \cdot 20A = 4.40 kVA$. \\ +The apparent power is $S = U \cdot I = 220 ~\rm V \cdot 20 ~\rm A = 4.40 ~\rm kVA$. \\ \\ 
-The reactive power is $Q = \sqrt{S^2 - P^2} = \sqrt{(4.40 kVA)^2 - (1.80 kW)^2} = 4.01 kVar$ \\ +The reactive power is $Q = \sqrt{S^2 - P^2} = \sqrt{(4.40 ~\rm kVA)^2 - (1.80 ~\rm kW)^2} = 4.01 ~\rm kVar$ \\ \\ 
-The power factor is $\cos \varphi = {{P}\over{S}} = {{1.80 kW}\over{4.40 kVA}} = 0.41$.+The power factor is $\cos \varphi = {{P}\over{S}} = {{1.80 ~\rm kW}\over{4.40 ~\rm kVA}} = 0.41$.
  
 </collapse> </collapse>
Zeile 1255: Zeile 1256:
  
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
 +
 +#@TaskTitle_HTML@#7.2.2 Motor on 3-Phase System I#@TaskText_HTML@#
 +
 +A three-phase motor is connected to an artificial three-phase system and can be configured in wye or delta configuration.
 +  * The voltage measured on a single coil shall always be $230 ~\rm V$. 
 +  * The current measured on a single coil shall always be $10 ~\rm A$.
 +  * The phase shift for every string is $25°$ 
 +
 +  - The motor shall be in wye configuration. \\ Write down the string voltage, phase voltage, string current, phase current, and active power
 +  - The motor shall be in delta configuration. \\ Write down the string voltage, phase voltage, string current, phase current, and active power
 +  - Compare the results
 +#@TaskEnd_HTML@#
 +
 +#@TaskTitle_HTML@#7.2.3 Heater on 3-Phase System#@TaskText_HTML@#
 +
 +A three-phase heater with given resistors is connected to the $230~\rm V$/$400~\rm V$ three-phase system. The heater shows purely ohmic behavior and can be configured in wye or delta configuration. \\
 +
 +  - The heater is configured in a delta configuration and provides a constant heating power of $6 ~\rm kW$.
 +    - Calculate the resistor value of a single string in the heater
 +    - Calculate the RMS values of the string currents and phase currents.
 +  - The heater with the same resistors as in 1. is now configured in a wye configuration. 
 +    - Calculate the RMS values of the string currents and phase currents.
 +    - Compare the heating power in delta configuration (1.) and wye configuration (2.) 
 +#@TaskEnd_HTML@#
 +
 +#@TaskTitle_HTML@#7.2.4 Motor on 3-Phase System II#@TaskText_HTML@#
 +
 +A three-phase motor is connected to a three-phase system with a phase voltage of $400 ~\rm V$. The phase current is $16 ~\rm A$ and the power factor $0.9$. \\
 +Calculate the active power, reactive power, and apparent power.
 +
 +#@TaskEnd_HTML@#
 +
 +
 +#@TaskTitle_HTML@#7.2.5 Motor on 3-Phase System III#@TaskText_HTML@#
 +
 +A symmetrical and balanced three-phase motor of a production line shall be configured in a star configuration and provide a power of $17~\rm kW$ with a power factor of $0.75$. The voltage on a single string is measured to be $135 ~\rm V$. \\
 +Calculate the string current.
 +
 +#@TaskEnd_HTML@#
  
 ==== Related Links ==== ==== Related Links ====